Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Oncol ; 41(13): 2403-2415, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36626696

ABSTRACT

PURPOSE: To assess diagnostic performance of digital breast tomosynthesis (DBT) alone or combined with technologist-performed handheld screening ultrasound (US) in women with dense breasts. METHODS: In an institutional review board-approved, Health Insurance Portability and Accountability Act-compliant multicenter protocol in western Pennsylvania, 6,179 women consented to three rounds of annual screening, interpreted by two radiologist observers, and had appropriate follow-up. Primary analysis was based on first observer results. RESULTS: Mean participant age was 54.8 years (range, 40-75 years). Across 17,552 screens, there were 126 cancer events in 125 women (7.2/1,000; 95% CI, 5.9 to 8.4). In year 1, DBT-alone cancer yield was 5.0/1,000, and of DBT+US, 6.3/1,000, difference 1.3/1,000 (95% CI, 0.3 to 2.1; P = .005). In years 2 + 3, DBT cancer yield was 4.9/1,000, and of DBT+US, 5.9/1,000, difference 1.0/1,000 (95% CI, 0.4 to 1.5; P < .001). False-positive rate increased from 7.0% for DBT in year 1 to 11.5% for DBT+US and from 5.9% for DBT in year 2 + 3 to 9.7% for DBT+US (P < .001 for both). Nine cancers were seen only by double reading DBT and one by double reading US. Ten interval cancers (0.6/1,000 [95% CI, 0.2 to 0.9]) were identified. Despite reduction in specificity, addition of US improved receiver operating characteristic curves, with area under receiver operating characteristic curve increasing from 0.83 for DBT alone to 0.92 for DBT+US in year 1 (P = .01), with smaller improvements in subsequent years. Of 6,179 women, across all 3 years, 172/6,179 (2.8%) unique women had a false-positive biopsy because of DBT as did another 230/6,179 (3.7%) women because of US (P < .001). CONCLUSION: Overall added cancer detection rate of US screening after DBT was modest at 19/17,552 (1.1/1,000; CI, 0.5- to 1.6) screens but potentially overcomes substantial increases in false-positive recalls and benign biopsies.


Subject(s)
Breast Neoplasms , Mammography , Humans , Female , Adult , Middle Aged , Aged , Male , Mammography/methods , Breast Density , Prospective Studies , Early Detection of Cancer/methods , Mass Screening/methods
2.
Nat Commun ; 12(1): 5645, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34561440

ABSTRACT

Though consistently shown to detect mammographically occult cancers, breast ultrasound has been noted to have high false-positive rates. In this work, we present an AI system that achieves radiologist-level accuracy in identifying breast cancer in ultrasound images. Developed on 288,767 exams, consisting of 5,442,907 B-mode and Color Doppler images, the AI achieves an area under the receiver operating characteristic curve (AUROC) of 0.976 on a test set consisting of 44,755 exams. In a retrospective reader study, the AI achieves a higher AUROC than the average of ten board-certified breast radiologists (AUROC: 0.962 AI, 0.924 ± 0.02 radiologists). With the help of the AI, radiologists decrease their false positive rates by 37.3% and reduce requested biopsies by 27.8%, while maintaining the same level of sensitivity. This highlights the potential of AI in improving the accuracy, consistency, and efficiency of breast ultrasound diagnosis.


Subject(s)
Algorithms , Artificial Intelligence , Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Early Detection of Cancer , Ultrasonography/methods , Adult , Aged , Breast Neoplasms/diagnosis , Female , Humans , Mammography/methods , Middle Aged , ROC Curve , Radiologists/statistics & numerical data , Reproducibility of Results , Retrospective Studies
3.
J Breast Imaging ; 3(3): 301-311, 2021 May 21.
Article in English | MEDLINE | ID: mdl-38424776

ABSTRACT

OBJECTIVE: For breast US interpretation, to assess impact of computer-aided diagnosis (CADx) in original mode or with improved sensitivity or specificity. METHODS: In this IRB approved protocol, orthogonal-paired US images of 319 lesions identified on screening, including 88 (27.6%) cancers (median 7 mm, range 1-34 mm), were reviewed by 9 breast imaging radiologists. Each observer provided BI-RADS assessments (2, 3, 4A, 4B, 4C, 5) before and after CADx in a mode-balanced design: mode 1, original CADx (outputs benign, probably benign, suspicious, or malignant); mode 2, artificially-high-sensitivity CADx (benign or malignant); and mode 3, artificially-high-specificity CADx (benign or malignant). Area under the receiver operating characteristic curve (AUC) was estimated under each modality and for standalone CADx outputs. Multi-reader analysis accounted for inter-reader variability and correlation between same-lesion assessments. RESULTS: AUC of standalone CADx was 0.77 (95% CI: 0.72-0.83). For mode 1, average reader AUC was 0.82 (range 0.76-0.84) without CADx and not significantly changed with CADx. In high-sensitivity mode, all observers' AUCs increased: average AUC 0.83 (range 0.78-0.86) before CADx increased to 0.88 (range 0.84-0.90), P < 0.001. In high-specificity mode, all observers' AUCs increased: average AUC 0.82 (range 0.76-0.84) before CADx increased to 0.89 (range 0.87-0.92), P < 0.0001. Radiologists responded more frequently to malignant CADx cues in high-specificity mode (42.7% vs 23.2% mode 1, and 27.0% mode 2, P = 0.008). CONCLUSION: Original CADx did not substantially impact radiologists' interpretations. Radiologists showed improved performance and were more responsive when CADx produced fewer false-positive malignant cues.

SELECTION OF CITATIONS
SEARCH DETAIL
...