Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Crit Care ; 21(1): 210, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28789683

ABSTRACT

BACKGROUND: Despite many animal studies and clinical trials, mortality in sepsis remains high. This may be due to the fact that most experimental studies of sepsis employ young animals, whereas the majority of septic patients are elderly (60 - 70 years). The objective of the present study was to examine the sepsis-induced inflammatory and pro-coagulant responses in aged mice. Since running exercise protects against a variety of diseases, we also examined the effect of voluntary running on septic responses in aged mice. METHODS: Male C57BL/6 mice were housed in our institute from 2-3 to 22 months (an age mimicking that of the elderly). Mice were prevented from becoming obese by food restriction (given 70-90% of ad libitum consumption amount). Between 20 and 22 months, a subgroup of mice ran voluntarily on wheels, alternating 1-3 days of running with 1-2 days of rest. At 22 months, mice were intraperitoneally injected with sterile saline (control) or 3.75 g/kg fecal slurry (septic). At 7 h post injection, we examined (1) neutrophil influx in the lung and liver by measuring myeloperoxidase and/or neutrophil elastase in the tissue homogenates by spectrophotometry, (2) interleukin 6 (IL6) and KC in the lung lavage by ELISA, (3) pulmonary surfactant function by measuring percentage of large aggregates, (4) capillary plugging (pro-coagulant response) in skeletal muscle by intravital microscopy, (5) endothelial nitric oxide synthase (eNOS) protein in skeletal muscle (eNOS-derived NO is putative inhibitor of capillary plugging) by immunoblotting, and (6) systemic blood platelet counts by hemocytometry. RESULTS: Sepsis caused high levels of pulmonary myeloperoxidase, elastase, IL6, KC, liver myeloperoxidase, and capillary plugging. Sepsis also caused low levels of surfactant function and platelet counts. Running exercise increased eNOS protein and attenuated the septic responses. CONCLUSIONS: Voluntary running protects against exacerbated sepsis-induced inflammatory and pro-coagulant responses in aged mice. Protection against pro-coagulant responses may involve eNOS upregulation. The present discovery in aged mice calls for clinical investigation into potential beneficial effects of exercise on septic outcomes in the elderly.


Subject(s)
Running/physiology , Sepsis/physiopathology , Aging/metabolism , Aging/physiology , Analysis of Variance , Animals , Enzyme-Linked Immunosorbent Assay/methods , Interleukin-6/analysis , Interleukin-6/blood , Leukocyte Elastase/analysis , Leukocyte Elastase/blood , Male , Mice , Mice, Inbred C57BL , Peroxidase/analysis , Peroxidase/blood
2.
Antioxidants (Basel) ; 6(3)2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28661424

ABSTRACT

Sepsis, life-threatening organ dysfunction caused by a dysfunctional host response to infection, is associated with high mortality. A promising strategy to improve the outcome is to inject patients intravenously with ascorbate (vitamin C). In animal models of sepsis, this injection improves survival and, among others, the microvascular function. This review examines our recent work addressing ascorbate's ability to inhibit arteriolar dysfunction and capillary plugging in sepsis. Arteriolar dysfunction includes impaired vasoconstriction/dilation (previously reviewed) and impaired conduction of vasoconstriction/dilation along the arteriole. We showed that ascorbate injected into septic mice prevents impaired conducted vasoconstriction by inhibiting neuronal nitric oxide synthase-derived NO, leading to restored inter-endothelial electrical coupling through connexin 37-containing gap junctions. Hypoxia/reoxygenation (confounding factor in sepsis) also impairs electrical coupling by protein kinase A (PKA)-dependent connexin 40 dephosphorylation; ascorbate restores PKA activation required for this coupling. Both effects of ascorbate could explain its ability to protect against hypotension in sepsis. Capillary plugging in sepsis involves P-selectin mediated platelet-endothelial adhesion and microthrombi formation. Early injection of ascorbate prevents capillary plugging by inhibiting platelet-endothelial adhesion and endothelial surface P-selectin expression. Ascorbate also prevents thrombin-induced platelet aggregation and platelet surface P-selectin expression, thus preventing microthrombi formation. Delayed ascorbate injection reverses capillary plugging and platelet-endothelial adhesion; it also attenuates sepsis-induced drop in platelet count in systemic blood. Thrombin-induced release of plasminogen-activator-inhibitor-1 from platelets (anti-fibrinolytic event in sepsis) is inhibited by ascorbate pH-dependently. Thus, under acidotic conditions in sepsis, ascorbate promotes dissolving of microthrombi in capillaries. We propose that protected/restored arteriolar conduction and capillary bed perfusion by ascorbate contributes to reduced organ injury and improved survival in sepsis.

3.
Blood Coagul Fibrinolysis ; 28(1): 28-33, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26829365

ABSTRACT

Plugging of the capillary bed can lead to organ failure and mortality in sepsis. We have reported that intravenous ascorbate injection reduces platelet adhesion to the capillary wall and capillary plugging in septic mice. Both platelet adhesion and capillary plugging require P-selectin, a key adhesion molecule. To elucidate the beneficial effect of ascorbate, we hypothesized that ascorbate reduces platelet-endothelial adhesion by reducing P-selectin surface expression in endothelial cells. We used mouse platelets, and monolayers of cultured microvascular endothelial cells (mouse skeletal muscle origin) stimulated with lipopolysaccharide, to examine platelet-endothelial adhesion. P-selectin mRNA expression in endothelial cells was determined by real-time PCR and P-selectin protein expression at the surface of these cells by immunofluorescence. Secretion of von Willebrand factor from cells into the supernatant (a measure of P-selectin-containing granule exocytosis) was determined by ELISA. Lipopolysaccharide (10 µg/ml, 1 h) increased platelet-endothelial adhesion. P-selectin-blocking antibody inhibited this adhesion. Lipopolysaccharide also increased P-selectin mRNA in endothelial cells, P-selectin expression at the endothelial surface, and von Willebrand factor secretion. Ascorbate pretreatment (100 µmol/l, 4 h) inhibited the increased platelet adhesion, surface expression of P-selectin, and von Willebrand factor secretion, but not the increase in P-selectin mRNA. The lipopolysaccharide-induced increase in platelet-endothelial adhesion requires P-selectin presence at the endothelial surface. Ascorbate's ability to reduce this presence could be important in reducing both platelet adhesion to the capillary wall and capillary plugging in sepsis.


Subject(s)
Ascorbic Acid/pharmacology , Endothelial Cells/metabolism , P-Selectin/metabolism , Sepsis/metabolism , Animals , Humans , Mice , Mice, Inbred C57BL , Platelet Adhesiveness
4.
Blood Coagul Fibrinolysis ; 26(4): 436-42, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25730478

ABSTRACT

The microcirculation during sepsis fails due to capillary plugging involving microthrombosis. We demonstrated that intravenous injection of ascorbate reduces this plugging, but the mechanism of this beneficial effect remains unclear. We hypothesize that ascorbate inhibits the release of the antifibrinolytic plasminogen activator inhibitor-1 (PAI-1) from endothelial cells and platelets during sepsis. Microvascular endothelial cells and platelets were isolated from mice. Cells were cultured and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNFα), or thrombin (agents of sepsis), with/without ascorbate for 1-24 h. PAI-1 mRNA was determined by quantitative PCR. PAI-1 protein release into the culture medium was measured by ELISA. In platelets, PAI-1 release was measured after LPS, TNFα, or thrombin stimulation, with/without ascorbate. In endothelial cells, LPS and TNFα increased PAI-1 mRNA after 6-24 h, but no increase in PAI-1 release was observed; ascorbate did not affect these responses. In platelets, thrombin, but not LPS or TNFα, increased PAI-1 release; ascorbate inhibited this increase at low extracellular pH. In unstimulated endothelial cells and platelets, PAI-1 is released into the extracellular space. Thrombin increases this release from platelets; ascorbate inhibits it pH-dependently. The data suggest that ascorbate promotes fibrinolysis in the microvasculature under acidotic conditions in sepsis.


Subject(s)
Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Blood Platelets/drug effects , Endothelial Cells/drug effects , Plasminogen Activator Inhibitor 1/genetics , Sepsis/drug therapy , Animals , Blood Platelets/immunology , Blood Platelets/metabolism , Cells, Cultured , Endothelial Cells/immunology , Endothelial Cells/metabolism , Gene Expression Regulation/drug effects , Male , Mice , Mice, Inbred C57BL , Plasminogen Activator Inhibitor 1/immunology , RNA, Messenger/genetics , Sepsis/genetics , Sepsis/immunology
5.
J Vasc Res ; 52(6): 396-403, 2015.
Article in English | MEDLINE | ID: mdl-27194161

ABSTRACT

BACKGROUND: We discovered that lipopolysaccharide (LPS, an initiating factor in sepsis) and hypoxia-reoxygenation (H/R, a confounding factor) reduce electrical coupling between microvascular endothelial cells from wild-type (WT) but not Cx40-/- mice. Because Cx40 knockout could result in nonspecific effects, this discovery may not establish the causal relationship between Cx40 and reduced coupling. Using the same cell culture model, we aimed to address this uncertainty by using the rescue-of-function approach. METHODS/RESULTS: Electrical coupling between endothelial cells (hind-limb muscle origin) was determined by electrophysiology. LPS, H/R and concurrent LPS + H/R reduced coupling between WT but not Cx40-/- cells. The defect in Cx40-/- cells was rescued by ectopic expression of Cx40, after infecting the cells with adenovirus encoding Cx40. Cx40-/- cells were also engineered to express mutant Cx40 that lacked the carboxyl terminal domain beginning at residue 236 (Cx40x0394;237-358) or 344 (Cx40x0394;345-358). No response to inflammatory stimuli was observed in cells expressing either of these 2 mutants. CONCLUSION: Our data establish the causal relationship between Cx40 and reduced coupling and suggest that the 345-358 amino acid motif of the Cx40 carboxyl terminal is required for reduced coupling. Cx40 may participate in compromised conducted response in the microvasculature during sepsis.


Subject(s)
Connexins/metabolism , Endothelial Cells/drug effects , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Microvessels/drug effects , Muscle, Skeletal/blood supply , Oxygen/metabolism , Sepsis/metabolism , Animals , Cell Hypoxia , Cell Shape/drug effects , Connexins/deficiency , Connexins/genetics , Electric Conductivity , Endothelial Cells/metabolism , Endothelial Cells/pathology , Genotype , HEK293 Cells , Hindlimb , Humans , Inflammation/genetics , Inflammation/pathology , Mice, Knockout , Microvessels/metabolism , Microvessels/pathology , Mutation , Phenotype , Protein Domains , Sepsis/genetics , Sepsis/pathology , Transduction, Genetic , Transfection , Gap Junction alpha-5 Protein
6.
Blood Coagul Fibrinolysis ; 25(7): 745-53, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24824492

ABSTRACT

Plugging of the capillary bed in tissues correlates with organ failure during sepsis. In septic mouse skeletal muscle, we showed that blood in capillaries becomes hypercoagulable and that ascorbate injection inhibits capillary plugging. In the present study, we hypothesized that ascorbate promotes fibrinolysis, reversing this plugging. Sepsis in mice was induced by fecal injection into peritoneum. Mice were injected intravenously with a bolus of streptokinase (fibrinolytic agent) or ascorbate at 5-6 h. Both agents reversed capillary plugging in muscle at 7 h. Sepsis increased mRNA expression of urokinase plasminogen activator (u-PA) (profibrinolytic) and plasminogen activator inhibitor 1 (PAI-1) (antifibrinolytic) in muscle and liver homogenates at 7 h. Ascorbate did not affect u-PA mRNA in either tissue, but it inhibited PAI-1 mRNA in muscle, suggesting enhanced fibrinolysis in this tissue. However, ascorbate did not affect increased PAI-1 mRNA in the liver (dominant source of soluble PAI-1 in systemic blood). Consistently, ascorbate affected neither elevated PAI-1 protein/enzymatic activity in septic liver nor lowered plasmin antiplasmin level in septic blood. Furthermore, hypocoagulability of septic blood revealed by thrombelastography and thrombin-induced PAI-1 release from isolated platelets (ex-vivo model of sepsis) were not affected by ascorbate. Based on the PAI-1 protein data, the present study does not support the hypothesis that ascorbate promotes fibrinolysis in sepsis.


Subject(s)
Ascorbic Acid/pharmacology , Fibrinolysis/drug effects , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Sepsis/blood , Animals , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/pathology , Serpin E2/genetics , Serpin E2/metabolism , Thrombelastography/methods , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism
7.
J Surg Res ; 191(2): 432-40, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24814200

ABSTRACT

BACKGROUND: Sepsis, a potential risk associated with surgery, leads to a systemic inflammatory response including the plugging of capillary beds. This plugging may precipitate organ failure and subsequent death. We have shown that capillary plugging can be reversed rapidly within 1 h by intravenous injection of ascorbate in mouse skeletal muscle. It is unknown whether, in parallel with this effect, ascorbate negatively affects the protective responses to sepsis involving the fibrinolytic and immune systems. We hypothesized that treatment with ascorbate for 1 h does not alter bacterial content, plasminogen activator inhibitor 1 (PAI-1), and neutrophil infiltration in lung, kidney, spleen, and liver (organs with high immune response) of septic mice. MATERIALS AND METHODS: Sepsis was induced by feces injection into the peritoneum. Mice were injected intravenously with ascorbate at 6 h (10 mg/kg), and samples of peritoneal fluid, arterial blood, and organs collected at 7 h were subjected to analyses of bacterial content, PAI-1 messenger RNA and enzymatic activity, and myeloperoxidase (MPO) (a measure of neutrophil infiltration). RESULTS: Sepsis increased bacterial content in all fluids and organs and increased PAI-1 messenger RNA and enzymatic activity in the lung and liver. Sepsis increased the myeloperoxidase level in the lung and liver, and lowered it in the spleen. Except for decreasing the bacterial content in blood, these responses to sepsis were not altered by ascorbate. CONCLUSIONS: The rapid effect of ascorbate against capillary plugging in the septic mouse skeletal muscle is not accompanied by alterations in PAI-1 or myeloperoxidase responses in the organs with high immune response.


Subject(s)
Ascorbic Acid/pharmacology , Bacteria/isolation & purification , Peroxidase/metabolism , Plasminogen Activator Inhibitor 1/genetics , Sepsis/drug therapy , Animals , Male , Mice , Mice, Inbred C57BL , Neutrophil Infiltration , RNA, Messenger/analysis , Sepsis/immunology , Sepsis/microbiology
8.
Microcirculation ; 20(6): 502-10, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23402318

ABSTRACT

OBJECTIVE: Compromised perfusion of the capillary bed can lead to organ failure and mortality in sepsis. We have reported that intravenous injection of ascorbate inhibits platelet adhesion and plugging in septic capillaries. In this study, we hypothesized that ascorbate reduces aggregation of platelets and their surface expression of P-selectin (a key adhesion molecule) in mice. METHODS: Platelets were isolated from control mice and subjected to agents known to be released into the bloodstream during sepsis (thrombin, ADP or U46619, thromboxane A2 analog). Platelet aggregation was analyzed by aggregometry and P-selectin expression by flow cytometry. RESULTS: Platelet-activating agents increased aggregation and P-selectin expression. Ascorbate inhibited these increases. This inhibitory effect was NOS-independent (LNAME had no effect). In contrast to the platelet-activating agents, direct stimuli lipopolysaccharide, TNFα, or plasma from septic mice did not increase aggregation/expression, a finding consistent with the literature. The results suggest a complex mechanism of platelet aggregation and P-selectin expression in sepsis, where generation of platelet-activating stimuli is required first, before platelet aggregation and adhesion in capillaries occur. CONCLUSION: The ability of ascorbate to reduce platelet aggregation and P-selectin expression could be an important mechanism by which ascorbate inhibits capillary plugging in sepsis.


Subject(s)
Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Models, Biological , P-Selectin/biosynthesis , Platelet Aggregation/drug effects , Sepsis/metabolism , Animals , Gene Expression Regulation/drug effects , Inflammation Mediators/metabolism , Mice , Nitric Oxide/metabolism
9.
Microcirculation ; 18(2): 152-62, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21199094

ABSTRACT

Sepsis is a complex multifaceted response to a local infectious insult. One important facet is the circulatory system dysfunction, which includes capillary bed plugging. This review addresses the mechanisms of capillary plugging and highlights our recent discoveries on the roles of NO, ROS, and activated coagulation in platelet adhesion and blood flow stoppage in septic mouse capillaries. We show that sepsis increases platelet adhesion, fibrin deposition and flow stoppage in capillaries, and that NADPH oxidase-derived ROS, rather than NO, play a detrimental role in this adhesion/stoppage. P-selectin and activated coagulation are required for adhesion/stoppage. Further, platelet adhesion in capillaries (i) strongly predicts capillary flow stoppage, and (ii) may explain why severe sepsis is associated with a drop in platelet count in systemic blood. Significantly, we also show that a single bolus of the antioxidant ascorbate (injected intravenously at clinically relevant dose of 10 mg/kg) inhibits adhesion/stoppage. Our data suggest that eNOS-derived NO at the platelet-endothelial interface is anti-adhesive and required for the inhibitory effect of ascorbate. Because of the critical role of ROS in capillary plugging, ascorbate bolus administration may be beneficial to septic patients whose survival depends on restoring microvascular perfusion.


Subject(s)
Blood Coagulation/physiology , Blood Platelets/physiology , Capillaries/physiopathology , Sepsis/blood , Sepsis/physiopathology , Animals , Ascorbic Acid/pharmacology , Blood Flow Velocity , Capillaries/drug effects , Fibrin/metabolism , Humans , Mice , Models, Biological , Nitric Oxide/blood , Oxidative Stress , Platelet Adhesiveness , Reactive Oxygen Species/blood , Sepsis/drug therapy
10.
Am J Physiol Heart Circ Physiol ; 300(4): H1402-11, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21239638

ABSTRACT

Atrial fibrillation (AF), the most common cardiac arrhythmia seen in general practice, can be promoted by conduction slowing. Cardiac impulse conduction depends on gap junction channels, which are composed of connexins (Cxs). While atrial Cx40 and Cx43 are equally expressed, AF studies have primarily focused on Cx40 reductions. The G60S Cx43 mutant (Cx43(G60S/+)) mouse model of Oculodentodigital dysplasia has a 60% reduction in Cx43 in the atria. Cx43(G60S/+) mice were compared with Cx40-deficient (Cx40(-/-)) mice to determine the role of Cxs in atrial tachycardia/fibrillation (AT/F). Intracardiac electrophysiological studies were done in 6-mo-old male C57BL/6 Cx43(G60S/+) mutant, littermate (Cx43(+/+)), Cx40(-/-), and C57BL/6 wild-type (WT) mice. AT/F induction used an extra stimulus during sinus rhythm, programmed electrical stimulation, or burst pacing (1-ms pulses, 50-Hz, 400-ms train) in the absence and presence of carbachol (CCh). Atrial effective refractory periods did not differ between strains. Cx43(G60S/+) mice were more susceptible to induction of sustained AT/F (duration >2 min, 9 of 12; maximum >35 min) compared with Cx43(+/+) mice (3 of 11; χ(2) = 5.24; P = 0.02). CCh enhanced sustained AT/F susceptibility in WT (from 1 of 12 without, to 7 of 10 with CCh; χ(2) = 8.98; P < 0.01) but not in Cx40(-/-) mice (1 of 13 without vs. 2 of 9 with CCh; χ(2) = 0.95; P = NS). The pattern of epicardial recordings during AT/F in Cx43(G60S/+) mice was left preceding right, with left atrial fractionated activation patterns consistent with clinical observations of AF. In conclusions, while Cx43(G60S/+) mice had severe AT/F, Cx40(-/-) mice were resistant to CCh-induced AT/F.


Subject(s)
Atrial Fibrillation/physiopathology , Connexin 43/physiology , Connexins/physiology , Tachycardia/physiopathology , Abnormalities, Multiple/drug therapy , Abnormalities, Multiple/genetics , Abnormalities, Multiple/physiopathology , Animals , Atrial Fibrillation/drug therapy , Atrial Fibrillation/genetics , Carbachol/pharmacology , Cardiac Pacing, Artificial , Cardiotonic Agents/pharmacology , Connexin 43/genetics , Connexins/genetics , Gap Junctions/drug effects , Gap Junctions/physiology , Heart Conduction System/drug effects , Heart Conduction System/physiopathology , Male , Mice , Mice, Inbred C57BL , Mutation , Tachycardia/drug therapy , Tachycardia/genetics , Gap Junction alpha-5 Protein
11.
Can J Physiol Pharmacol ; 89(1): 1-12, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21186372

ABSTRACT

In arterioles, a locally initiated diameter change can propagate rapidly along the vessel length (arteriolar conducted response), thus contributing to arteriolar hemodynamic resistance. The response is underpinned by electrical coupling along the arteriolar endothelial layer. Connexins (Cx; constituents of gap junctions) are required for this coupling. This review addresses the effect of acute systemic inflammation (sepsis) on arteriolar conduction and interendothelial electrical coupling. Lipopolysaccharide (LPS; an initiating factor in sepsis) and polymicrobial sepsis (24 h model) attenuate conducted vasoconstriction in mice. In cultured microvascular endothelial cells harvested from rat and mouse skeletal muscle, LPS reduces both conducted hyperpolarization-depolarization along capillary-like structures and electrical coupling along confluent cell monolayers. LPS also tyrosine-phosphorylates Cx43 and serine-dephosphorylates Cx40. Since LPS-reduced coupling is Cx40- but not Cx43-dependent, only Cx40 dephosphorylation may be consequential. Nitric oxide (NO) overproduction is critical in advanced sepsis, since the removal of this overproduction prevents the attenuated conduction. Consistently, (i) exogenous NO in cultured cells reduces coupling in a Cx37-dependent manner, and (ii) the septic microvasculature in vivo shows no Cx40 phenotype. A complex role emerges for endothelial connexins in sepsis. Initially, LPS may reduce interendothelial coupling and arteriolar conduction by targeting Cx40, whereas NO overproduction in advanced sepsis reduces coupling and conduction by targeting Cx37 instead.


Subject(s)
Arteritis/pathology , Arteritis/physiopathology , Connexins/physiology , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Microvessels/pathology , Microvessels/physiopathology , Animals , Arterioles/chemistry , Arterioles/pathology , Arterioles/physiopathology , Arteritis/metabolism , Endothelium, Vascular/chemistry , Humans , Microvessels/chemistry , Sepsis/metabolism , Sepsis/pathology , Sepsis/physiopathology , Vasoconstriction/physiology
12.
Intensive Care Med ; 36(11): 1928-34, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20689935

ABSTRACT

PURPOSE: Impaired microvascular perfusion in sepsis is not treated effectively because its mechanism is unknown. Since inflammatory and coagulation pathways cross-activate, we tested if stoppage of blood flow in septic capillaries is due to oxidant-dependent adhesion of platelets in these microvessels. METHODS: Sepsis was induced in wild type, eNOS(-/-), iNOS(-/-), and gp91phox(-/-) mice (n = 14-199) by injection of feces into the peritoneum. Platelet adhesion, fibrin deposition, and blood flow stoppage in capillaries of hindlimb skeletal muscle were assessed by intravital microscopy. Prophylactic treatments at the onset of sepsis were intravenous injection of platelet-depleting antibody, P-selectin blocking antibody, ascorbate, or antithrombin. Therapeutic treatments (delayed until 6 h) were injection of ascorbate or the glycoprotein IIb/IIIa inhibitor eptifibatide, or local superfusion of the muscle with NOS cofactor tetrahydrobiopterin or NO donor S-nitroso-N-acetylpenicillamine (SNAP). RESULTS: Sepsis at 6-7 h markedly increased the number of stopped-flow capillaries and the occurrence of platelet adhesion and fibrin deposition in these capillaries. Platelet depletion, iNOS and gp91phox deficiencies, P-selectin blockade, antithrombin, or prophylactic ascorbate prevented, whereas delayed ascorbate, eptifibatide, tetrahydrobiopterin, or SNAP reversed, septic platelet adhesion and/or flow stoppage. The reversals by ascorbate and tetrahydrobiopterin were absent in eNOS(-/-) mice. Platelet adhesion predicted 90% of capillary flow stoppage. CONCLUSION: Impaired perfusion and/or platelet adhesion in septic capillaries requires NADPH oxidase, iNOS, P-selectin, and activated coagulation, and is inhibited by intravenous administration of ascorbate and by local superfusion of tetrahydrobiopterin and NO. Reversal of flow stoppage by ascorbate and tetrahydrobiopterin may depend on local eNOS-derived NO which dislodges platelets from the capillary wall.


Subject(s)
Capillaries/physiopathology , P-Selectin/metabolism , Platelet Adhesiveness/drug effects , Sepsis/physiopathology , Animals , Blood Coagulation/drug effects , Extremities/blood supply , Mice
13.
Free Radic Biol Med ; 49(6): 1008-13, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20541007

ABSTRACT

Connexins (Cx) are recognized as structural constituents of gap-junctional intercellular communication (GJIC). However, their function may extend beyond facilitating the exchange of metabolites and electrical signals between cells. In this study we asked if increased production of reactive oxygen species (ROS) in microvascular endothelial cells challenged by hypoxia/reoxygenation (H/R) requires Cx40, independent of GJIC. Because we showed that this ROS increase depends on NADPH oxidase, we also asked if Cx40 function (i.e., Cx40-dependent reduction in interendothelial electrical coupling after H/R) requires NADPH oxidase. ROS increase was assessed in confluent monolayers of cultured endothelial cells derived from skeletal muscle blood vessels of wild-type (WT) and Cx40(-/-) mice and in monolayers of GJIC-deficient SKHep1 cells overexpressing GFP-tagged Cx40. Electrical coupling was assessed in WT cells and in cells lacking the NADPH oxidase subunit gp91phox or p47phox. H/R elicited a 70-80% ROS increase in WT but not in Cx40(-/-) cells. The increase was not affected by the gap junction blocker 18alpha-glycyrrhetinic acid or by preventing the cells from establishing cell-to-cell contact. H/R increased ROS in SKHep1 cells expressing Cx40-GFP, but not in cells expressing the control vector. Finally, H/R reduced electrical coupling in WT and gp91phox(-/-) but not in p47phox(-/-) cells. Our data indicate that (i) the H/R-induced ROS increase in microvascular endothelial cells requires Cx40, independent of its role in GJIC, and (ii) p47phox rather than NADPH oxidase-derived ROS affects modulation of intercellular coupling. Together, the results raise an intriguing possibility that H/R-induced signaling in endothelial cells involves a cross-talk between Cx40 and NADPH oxidase.


Subject(s)
Connexins/metabolism , Endothelium, Vascular/metabolism , Hypoxia/metabolism , NADPH Oxidases/metabolism , Oxidative Coupling , Animals , Cell Line, Tumor , Connexins/genetics , Endothelium, Vascular/pathology , Hypoxia/genetics , Hypoxia/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidases/genetics , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism , Receptor Cross-Talk , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Signal Transduction/genetics , Transgenes/genetics , Gap Junction alpha-5 Protein
14.
Bioelectromagnetics ; 31(1): 64-76, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19644977

ABSTRACT

A 225 microT, extremely low frequency, pulsed electromagnetic field (PEMF) that was designed for the induction of antinociception, was tested for its effectiveness to influence blood flow within the skeletal microvasculature of a male Sprague-Dawley rat model (n = 103). Acetylcholine (0.1, 1.0, or 10 mM) was used to perturb normal blood flow and to delineate differential effects of the PEMF, based on degree of vessel dilation. After both 30 and 60 min of PEMF exposure, we report no effects on peak perfusion response to acetylcholine (with only 0.2% of the group difference attributed to exposure). Spectral analysis of blood flow data was generated to obtain information related to myogenic activity (0.15-0.40 Hz), respiratory rate (0.4-2.0 Hz), and heart rate (2.0-7.0 Hz), including the peak frequency within each of the three frequency regions identified above, peak power, full width at half maximum (FWHM), and mean within band. No significant effects due to exposure were observed on myogenic activity of examined blood vessels, or on heart rate parameters. Anesthesia-induced respiratory depression was, however, significantly reduced following PEMF exposure compared to shams (although exposure only accounted for 9.4% of the group difference). This set of data suggest that there are no significant acute physiological effects of 225 microT PEMF after 30 and 60 min of exposure on peak blood flow, heart rate, and myogenic activity, but perhaps a small attenuation effect on anesthetic-induced respiratory depression.


Subject(s)
Acetylcholine/pharmacology , Electromagnetic Fields , Magnetic Field Therapy/methods , Microvessels/drug effects , Microvessels/physiology , Vasodilator Agents/pharmacology , Anesthetics/pharmacology , Animals , Body Temperature/drug effects , Body Temperature/physiology , Bone and Bones/blood supply , Bone and Bones/drug effects , Bone and Bones/physiology , Heart/drug effects , Heart/physiology , Heart Rate/drug effects , Heart Rate/physiology , Male , Pain Management , Rats , Rats, Sprague-Dawley , Regional Blood Flow/drug effects , Regional Blood Flow/physiology , Respiration/drug effects , Time Factors
15.
Am J Physiol Heart Circ Physiol ; 297(1): H93-H101, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19429814

ABSTRACT

We have previously shown that increased nitric oxide (NO) production in sepsis impairs arteriolar-conducted vasoconstriction cGMP independently and that the gap junction protein connexin (Cx) 37 is required for this conducted response. In the present study, we hypothesized that NO impairs interendothelial electrical coupling in sepsis by targeting Cx37. We examined the effect of exogenous NO on coupling in monolayers of cultured microvascular endothelial cells derived from the hindlimb skeletal muscle of wild-type (WT), Cx37 null, Cx40 null, and Cx43(G60S) (nonfunctional mutant) mice. To assess coupling, we measured the spread of electrical current injected in the monolayer and calculated the monolayer intercellular resistance (inverse measure of coupling). The NO donor 2,2'-(hydroxynitrosohydrazino)bis-ethanamine (DETA) rapidly and reversibly reduced coupling in cells from WT mice, cGMP independently. NO scavenger HbO(2) did not affect baseline coupling, but it eliminated DETA-induced reduction in coupling. Reduced coupling in response to DETA was also seen in cells from Cx40 null and Cx43(G60S) mice, but not in cells from Cx37 null mice. DETA did not alter the expression of Cx37, Cx40, and Cx43 in WT cells analyzed by immunoblotting and immunofluorescence. Furthermore, neither the peroxynitrite scavenger 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron (III), superoxide scavenger Mn(III)tetrakis(4-benzoic acid)porphyrin chloride, nor preloading of WT cells with the antioxidant ascorbate affected this reduction. We conclude that NO-induced reduction of electrical coupling between microvascular endothelial cells depends on Cx37 and propose that NO in sepsis impairs arteriolar-conducted vasoconstriction by targeting Cx37 within the arteriolar wall.


Subject(s)
Connexins/physiology , Endothelial Cells/physiology , Endothelium, Vascular/physiology , Nitric Oxide/pharmacology , Animals , Blotting, Western , Capillaries/cytology , Capillaries/physiology , Cell Separation , Connexin 43/genetics , Connexin 43/physiology , Connexins/genetics , Electrophysiology , Endothelium, Vascular/cytology , Fluorescent Antibody Technique , Indicators and Reagents , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Donors/pharmacology , Nitrites/pharmacology , Peroxynitrous Acid/metabolism , Gap Junction alpha-5 Protein , Gap Junction alpha-4 Protein
16.
Crit Care Med ; 36(8): 2355-62, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18596627

ABSTRACT

OBJECTIVE: To determine the roles of nitric oxide synthase (NOS) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in the impairment of capillary blood flow in sepsis and in the reversal of this impairment by ascorbate. DESIGN: Prospective, controlled laboratory study. SETTING: Animal laboratory in research institute. SUBJECTS: Adult male wild type (WT), neuronal nitric oxide synthase (nNOS)-/-, inducible NOS (iNOS)-/-, endothelial NOS (eNOS)-/-, and gp91phox-/- mice. INTERVENTIONS: Sepsis was induced by feces injection into peritoneum (FIP). A bolus of ascorbate or NADPH oxidase inhibitor apocynin was injected intravenously at 6 hrs post-FIP. Alternatively, NOS cofactor (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) or nitric oxide donor S-nitroso-N-acetylpenicillamine was superfused on the surface of the extensor digitorum longus muscle. MEASUREMENTS AND MAIN RESULTS: Capillary blood flow impairment and NOS activity in the extensor digitorum longus muscle were measured by intravital microscopy and by enzymatic assay, respectively. Sepsis at 6 hrs impaired flow in WT mice. Apocynin, and knockout of gp91phox but not of any NOS isoforms, rescued this impairment. Constitutive NOS activity was unaffected by sepsis, but it was abolished by nNOS knockout (iNOS activity was negligible in all mice). Ascorbate rapidly (10 mins) rescued impaired flow in WT, nNOS-/-, iNOS-/- but not eNOS-/- mice. Ascorbate also improved survival of WT mice after FIP. BH4 and SNAP rescued flow in WT mice, while BH4 failed to rescue it in eNOS-/- mice. CONCLUSION: Capillary blood flow impairment in septic skeletal muscle requires NADPH oxidase but not NOS, and it is rapidly reversed by ascorbate and BH4 through an eNOS-dependent mechanism.


Subject(s)
Capillaries/drug effects , Muscle, Skeletal/blood supply , NADPH Oxidases/physiology , Nitric Oxide Synthase/physiology , Sepsis/metabolism , Acetophenones/pharmacology , Animals , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Male , Mice , Mice, Knockout , Microcirculation , Muscle, Skeletal/metabolism , NADP/pharmacology , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/metabolism , Nitric Oxide Synthase/metabolism
17.
J Cell Physiol ; 217(2): 350-9, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18521823

ABSTRACT

We showed that lipopolysaccharide (LPS) or hypoxia and reoxygenation (H/R) decreases electrical coupling between microvascular endothelial cells by targeting the gap junction protein connexin40 (Cx40), tyrosine kinase-, ERK1/2-, and PKA-dependently. Since LPS can compromise microvascular blood flow, resulting in micro-regional H/R, the concurrent LPS + H/R could reduce coupling to a much greater extent than LPS or H/R alone. We examined this possibility in a model of cultured microvascular endothelial cells (mouse skeletal muscle origin) in terms of electrical coupling and the phosphorylation status of Cx40. To assess coupling, we measured the spread of electrical current injected into the cell monolayer and computed the intercellular resistance as an inversed measure of coupling. In wild type cells, but not in Cx40 null cells, concurrent LPS + H/R synergistically increased resistance by approximately 270%, well above the level observed for LPS or H/R alone. Cx37 and Cx43 protein expression did not differ between Cx40 null and wild type cells. LPS + H/R increased resistance PKA- and PKC-dependently. By immunoprecipitating Cx40, we found that LPS + H/R reduced serine phosphorylation to a much greater degree than that observed for LPS or H/R alone. Further, PKA-specific, but not PKC-specific serine phosphorylation of Cx40 was also significantly reduced following LPS + H/R. This reduction was prevented by tyrosine kinase and MEK1/2 inhibition, by PKA activation, and mimicked in control cells by PKA inhibition. We conclude that LPS + H/R initiates tyrosine kinase- and ERK1/2-sensitive signaling that synergistically reduces inter-endothelial electrical coupling by dephosphorylating PKA-specific serine residues of Cx40.


Subject(s)
Cell Communication/drug effects , Cell Hypoxia , Connexins/metabolism , Endothelial Cells/drug effects , Lipopolysaccharides/pharmacology , Oxygen/metabolism , Animals , Cells, Cultured , Connexin 43/genetics , Connexin 43/metabolism , Connexins/deficiency , Connexins/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Dose-Response Relationship, Drug , Electric Impedance , Endothelial Cells/enzymology , Endothelial Cells/metabolism , Enzyme Activation , Enzyme Activators/pharmacology , Immunoprecipitation , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Microcirculation/drug effects , Microcirculation/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Muscle, Skeletal/blood supply , Phosphorylation , Protein Kinase C/metabolism , Protein Kinase Inhibitors/pharmacology , Sepsis/metabolism , Gap Junction alpha-5 Protein , Gap Junction alpha-4 Protein
19.
J Cell Physiol ; 217(1): 207-14, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18481258

ABSTRACT

Redox regulation of inducible nitric oxide synthase (iNOS) expression was investigated in lipopolysaccharide and interferon-gamma (LPS + IFNgamma)-stimulated microvascular endothelial cells from mouse skeletal muscle. Unstimulated endothelial cells produced reactive oxygen species (ROS) sensitive to inhibition of NADPH oxidase (apocynin and DPI), mitochondrial respiration (rotenone) and NOS (L-NAME). LPS + IFNgamma caused a marked increase in ROS production; this increase was abolished by inhibition of NADPH oxidase (apocynin, DPI and p47phox deficiency). LPS + IFNgamma induced substantial expression of iNOS protein. iNOS expression was prevented by the antioxidant ascorbate and by NADPH oxidase inhibition (apocynin, DPI and p47phox deficiency), but not by inhibition of mitochondrial respiration (rotenone) and xanthine oxidase (allopurinol). iNOS expression also was prevented by selective antagonists of ERK, JNK, Jak2, and NFkappaB activation. LPS + IFNgamma stimulated activation/phosphorylation of ERK, JNK, and Jak2 and activation/degradation of IkappaB, but only the activation of JNK and Jak2 was sensitive to ascorbate, apocynin and p47phox deficiency. Ascorbate, apocynin and p47phox deficiency also inhibited the LPS + IFNgamma-induced DNA binding activity of transcription factors IRF1 and AP1 but not NFkappaB. In conclusion, LPS + IFNgamma-induced NFkappaB activation is necessary for iNOS induction but is not dependent on ROS signaling. LPS + IFNgamma-stimulated NADPH oxidase activity produces ROS that activate the JNK-AP1 and Jak2-IRF1 signaling pathways required for iNOS induction. Since blocking either NFkappaB activation or NADPH oxidase activity is sufficient to prevent iNOS expression, they are separate targets for therapeutic interventions that aim to modulate iNOS expression in sepsis.


Subject(s)
Endothelial Cells/metabolism , NADPH Oxidases/metabolism , Nitric Oxide Synthase Type II/biosynthesis , Oxidation-Reduction , Signal Transduction/physiology , Animals , Blotting, Western , Capillaries/cytology , Capillaries/metabolism , Electrophoretic Mobility Shift Assay , Enzyme Inhibitors/pharmacology , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Mice , NADPH Oxidases/drug effects , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/drug effects , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Sepsis/physiopathology , Signal Transduction/drug effects
20.
Microcirculation ; 14(7): 697-707, 2007.
Article in English | MEDLINE | ID: mdl-17885995

ABSTRACT

OBJECTIVE: The mechanism of neuronal nitric oxide synthase (nNOS)-dependent reduction in arteriolar conducted vasoconstriction in sepsis, and the possible protection by antioxidants, are unknown. The authors hypothesized that ascorbate inhibits the conduction deficit by reducing nNOS-derived NO production. METHODS: Using intravital microscopy and the cecal ligation and perforation (CLP) model of sepsis (24 h), arterioles in the cremaster muscle of male C57BL/6 wild-type mice were locally stimulated with KCl to initiate conducted vasoconstriction. The authors used the ratio of conducted constriction (500 microm upstream) to local constriction as an index of conduction (CR500). Cremaster muscle NOS enzymatic activity and protein expression, and plasma nitrite/nitrate levels were determined in control and septic mice. Intravenous ascorbate bolus (200 mg/kg in 0.1 ml of saline) was given early (0 h) or delayed at 23 h post CLP. RESULTS: Sepsis reduced CR500 from 0.73 +/- 0.03 to 0.21 +/- 0.03, increased nNOS activity from 87 +/- 9 to 220 +/- 29 pmol/mg/h and nitrite/nitrate from 16 +/- 1 to 39 +/- 3 microM, without affecting nNOS protein expression. Ascorbate at 0 and 23 h prevented/reversed the conduction deficit and the increases in nNOS activity and nitrite/nitrate level. NO donor SNAP (S-nitroso-N-acetylpenicillamine) reestablished the conduction deficit in ascorbate-treated septic mice. Superoxide scavenger MnTBAP (Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) did not affect this deficit. CONCLUSION: These data indicate that early and delayed intravenous boluses of ascorbate prevent/reverse sepsis-induced deficit in arteriolar conducted vasoconstriction in the cremaster muscle by inhibiting nNOS-derived NO production.


Subject(s)
Ascorbic Acid/pharmacology , Nitric Oxide Synthase Type I/metabolism , Sepsis/physiopathology , Vasoconstriction/drug effects , Animals , Arterioles/physiopathology , Mice , Muscle, Skeletal/blood supply , Nitric Oxide/analysis , Nitric Oxide/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...