Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mycologia ; 114(5): 887-899, 2022.
Article in English | MEDLINE | ID: mdl-35904478

ABSTRACT

The genus Rhododendron comprises over 1000 evergreen and deciduous species. In the Pacific Northwest Coast region of North America (PNWC), powdery mildews infecting deciduous Rhododendron spp. are well documented but less so on evergreen Rhododendron spp. Infections of both groups of hosts historically have been attributed to Erysiphe azaleae or E. vaccinii. No formal characterizations of powdery mildew fungi infecting either deciduous or evergreen Rhododendron spp. in the PNWC have been completed. The objectives of this study were to identify the powdery mildew pathogens infecting evergreen Rhododendron spp. in the PNWC and to assess the phylogenetic position of these fungi within the Erysiphaceae. To ascertain valid taxonomic conclusions, and to determine whether potential introductions of exotic Rhododendron powdery mildews in North America have occurred, it was necessary to put the new North American phylogenetic data into a worldwide context. Therefore, available phylogenetic data from all Erysiphe spp. on Rhododendron have been included in our analyses.Based on analyses of numerous new internal transcribed spacer (ITS) and 28S rDNA sequences and already available sequences deposited in GenBank retrieved from evergreen and deciduous Rhododendron spp., the following Erysiphe spp. could be phylogenetically confirmed (all belonging to Erysiphe sect. Microsphaera): Erysiphe azaleae nom. cons. (Oidium ericinum could be verified as a synonym), E. digitata (holotype sequenced), E. izuensis, and E. vaccinii. Erysiphe azaleae and E. vaccinii are epitypified with sequenced specimens, and an ex-neotype sequence has been obtained for Oidium ericinum. Erysiphe rhododendri (Erysiphe sect. Erysiphe), only known from two collections in India (Himalayan region), was not available for phylogentic analyses.


Subject(s)
Ascomycota , Rhododendron , Ascomycota/genetics , Erysiphe , Phylogeny , Plant Diseases/microbiology
2.
Microbiol Res ; 240: 126535, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32629360

ABSTRACT

Verticillium dahliae is a significant pathogen in cucurbit cropping systems for which there are limited control options outside of soil fumigation. Endophytes, fungi and bacteria that live within plant hosts without impacting the host negatively, have exhibited antagonism to V. dahliae. The objectives of this study were to survey potential V. dahliae-antagonistic endophytes from roots of 'Cinnamon Girl' pumpkin (Cucurbita pepo) grown under either polyethylene (PE), an experimental polylactic acid/ poly(hydroxalkanoate) (PLA/PHA) mulch, Weed Guard Plus, or no mulch, as well as from 'Sugar Baby' watermelon (Citrullus lanatus), and 'Tetsukabuto' squash (C. maxima x C. moschata). Four selected endophytes were screened for antagonism against V. dahliae in the laboratory, greenhouse, and field. A total of 777 isolates of potential fungal endophytes were recovered from pumpkin, watermelon, and squash roots between 2015 and 2016 of which 198 isolates were identified down to the genus level. Of those isolates, frequency of isolation was greatest for Dichotomopilus/Chaetomium spp. (5%), Cladosporium spp. (15.2 %), Clonostachys spp. (5.6 %), Epicoccum spp. (22.2 %), and Fusarium spp. (24.7 %). All five genera only weakly associated with roots grown under a particular mulch treatment (Cramer's V = 0.22) or cucurbit host (Cramer's V = 0.1925). In a laboratory culture plate assay, V. dahliae isolate JAW-113 was plated against one of four prospective endophytes (Dichotomopilus sp., Epicoccum sp., Microdochium sp., or Schizothecium sp.). The area under the Verticillium culture growth curve (AUVGC) was significantly highest (P < 0.0001) when V. dahliae was by Schizothecium sp. or Dichotomopilus sp. In a greenhouse study using a Mason jar assay with V. dahliae amended potting mix, pumpkin plant vigor, plant fresh weight, root fresh weight, and root dry weight were significantly higher (P < 0.05) for plants inoculated with Dichotomopilus sp., Epicoccum sp., Microdochium sp., and Schizothecium sp. compared to plants without endophyte inoculation. Subsequent field trials in 2017 and 2018 showed no significant differences in foliar disease severity or fruit yield, regardless of whether plants were inoculated with an endophyte or not. However, recovery of V. dahliae colony forming units from pumpkin stem sap was significantly lower (P < 0.0001) for plants inoculated with either Dichotomopilus sp. or Schizothecium sp. in 2017 or Dichotomopilus sp. in 2018.


Subject(s)
Ascomycota/physiology , Cucurbita/growth & development , Cucurbita/microbiology , Endophytes/physiology , Plant Roots/growth & development , Plant Roots/microbiology , Endophytes/isolation & purification , Fusarium , Plant Diseases/microbiology , Soil Microbiology , Verticillium , Washington
3.
Plant Dis ; 100(4): 797-801, 2016 Apr.
Article in English | MEDLINE | ID: mdl-30688619

ABSTRACT

Alternaria spp. were collected from potato foliage showing symptoms of early blight and brown spot in the Columbia Basin, WA and Bonners Ferry and Rupert, ID between 2009 and 2011. The aggressiveness of three Alternaria spp. on potato was quantified on nonwounded and wounded detached leaves of 'Russet Norkotah' potato; wounded detached leaves of 'Alturas', 'Ranger Russet', 'Russet Burbank', and 'Umatilla Russet'; and whole plants of Russet Norkotah. Mean infection frequencies (MIF) and area under the lesion expansion curve (AULEC) were significantly greater for Alternaria solani (P = 0.0072 and 0.0002, respectively) than for A. arborescens or A. arbusti on nonwounded leaves. Wounding of tissue significantly increased MIF and AULEC for A. arbusti (P = 0.008 and 0.0047, respectively) and AULEC for A. arborescens (P = 0.01) relative to nonwounded tissue. AULEC did not differ significantly among the three Alternaria spp. when inoculated onto wounded foliage of whole plants (P = 0.34); the AULEC of whole plants was positively and significantly correlated with AULEC on detached leaves (P = 0.03). Umatilla Russet was the most susceptible and Russet Burbank was the least susceptible based on MIF and AULEC for all three pathogen species. Results indicate that A. solani was the more aggressive pathogen of potato in the Columbia Basin, because both A. arborescens and A. arbusti require wounds and A. arbusti lesions do not expand significantly in comparison with A. solani or A. arborescens following inoculation.

4.
Plant Dis ; 100(2): 465-472, 2016 Feb.
Article in English | MEDLINE | ID: mdl-30694153

ABSTRACT

A number of Alternaria spp. have been isolated from potato worldwide but only Alternaria solani and A. alternata have been described as pathogenic to this host in the United States. These taxa are easily differentiated based on conidial morphology but species delimitation among the small-spored Alternaria spp. associated with potato are much more challenging. Accurate identification methods for small-spored Alternaria spp. are necessary so that a more thorough understanding of Alternaria epidemiology can be obtained. Isolations of Alternaria fungi from lesions on potato leaves collected in the U.S. Northwest were made between 2008 and 2011. Large-spored taxa (putatively A. solani), were isolated less frequently than small-spored taxa (putatively A. alternata sensu lato), except in 2010. Colletotrichum coccodes was isolated from necrotic lesions in 2008 to 2010 but not in 2011. Frequency of isolation ranged from 0.05 (5%) to 0.11 (11%) during the 3 years the fungus was detected. Anonymous genomic region OPA1-3, previously used for Alternaria systematics, allowed for the discrimination of phylogenetic lineages among 210 small-spored isolates. When OPA1-3 was restricted using enzyme ApaI, 65 isolates (31%) displayed a restriction banding pattern consistent with previously characterized morphospecies A. alternata and A. tenuissima and 145 (69%) displayed a restriction banding pattern consistent with the previously characterized morphospecies A. arborescens. Morphological characterization of a subsample of 59 small-spored Alternaria isolates randomly selected with each restriction pattern was compared with phylogenetic lineage. In all, 54 (92%) isolates were consistently assigned to the same group by both methods. Three isolates exhibited conidial morphologies that were inconsistent with any described morphospecies. A small number of isolates were identified as A. arbusti (infectoria group) via sequencing of the glyceraldehyde-3-phosphate-dehydrogenase locus and BLAST searches.

SELECTION OF CITATIONS
SEARCH DETAIL
...