Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Dyn ; 238(3): 581-94, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19235720

ABSTRACT

Vertebrate organs show consistent left-right (L-R) asymmetry in placement and patterning. To identify genes involved in this process we performed an ENU-based genetic screen. Of 135 lines analyzed 11 showed clear single gene defects affecting L-R patterning, including 3 new alleles of known L-R genes and mutants in novel L-R loci. We identified six lines (termed "gasping") that, in addition to abnormal L-R patterning and associated cardiovascular defects, had complex phenotypes including pulmonary agenesis, exencephaly, polydactyly, ocular and craniofacial malformations. These complex abnormalities are present in certain human disease syndromes (e.g., HYLS, SRPS, VACTERL). Gasping embryos also show defects in ciliogenesis, suggesting a role for cilia in these human congenital malformation syndromes. Our results indicate that genes controlling ciliogenesis and left-right asymmetry have, in addition to their known roles in cardiac patterning, major and unexpected roles in pulmonary, craniofacial, ocular and limb development with implications for human congenital malformation syndromes.


Subject(s)
Body Patterning/genetics , Extremities/embryology , Eye/embryology , Facial Bones/embryology , Mutagenesis/genetics , Respiratory System/embryology , Amino Acid Sequence , Animals , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Eye/metabolism , Facial Bones/metabolism , Gene Expression Regulation, Developmental/genetics , Humans , Mice , Microscopy, Electron, Scanning , Molecular Sequence Data , Mutation/genetics , Phenotype , Respiratory System/metabolism , Sequence Alignment
2.
Genes Dev ; 22(11): 1465-77, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18519639

ABSTRACT

We have identified an ethylnitrosourea (ENU)-induced recessive mouse mutation (Vcc) with a pleiotropic phenotype that includes cardiac, tracheoesophageal, anorectal, anteroposterior patterning defects, exomphalos, hindlimb hypoplasia, a presacral mass, renal and palatal agenesis, and pulmonary hypoplasia. It results from a C470R mutation in the proprotein convertase PCSK5 (PC5/6). Compound mutants (Pcsk5(Vcc/null)) completely recapitulate the Pcsk5(Vcc/Vcc) phenotype, as does an epiblast-specific conditional deletion of Pcsk5. The C470R mutation ablates a disulfide bond in the P domain, and blocks export from the endoplasmic reticulum and proprotein convertase activity. We show that GDF11 is cleaved and activated by PCSK5A, but not by PCSK5A-C470R, and that Gdf11-deficient embryos, in addition to having anteroposterior patterning defects and renal and palatal agenesis, also have a presacral mass, anorectal malformation, and exomphalos. Pcsk5 mutation results in abnormal expression of several paralogous Hox genes (Hoxa, Hoxc, and Hoxd), and of Mnx1 (Hlxb9). These include known Gdf11 targets, and are necessary for caudal embryo development. We identified nonsynonymous mutations in PCSK5 in patients with VACTERL (vertebral, anorectal, cardiac, tracheoesophageal, renal, limb malformation OMIM 192350) and caudal regression syndrome, the phenotypic features of which resemble the mouse mutation. We propose that Pcsk5, at least in part via GDF11, coordinately regulates caudal Hox paralogs, to control anteroposterior patterning, nephrogenesis, skeletal, and anorectal development.


Subject(s)
Abnormalities, Multiple/genetics , Body Patterning/genetics , Proprotein Convertases/genetics , Spine/abnormalities , Animals , Disease Models, Animal , Gene Expression Regulation, Developmental , Genes, Homeobox , Humans , Mice , Syndrome
3.
Hum Mol Genet ; 15(22): 3273-9, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-17035249

ABSTRACT

Otitis media (OM), inflammation of the middle ear, is the most common cause of hearing impairment and surgery in children. Recurrent and chronic forms of OM are known to have a strong genetic component, but nothing is known of the underlying genes involved in the human population. We have previously identified a novel semi-dominant mouse mutant, Jeff, in which the heterozygotes develop chronic suppurative OM (Hardisty, R.E., Erven, A., Logan, K., Morse, S., Guionaud, S., Sancho-Oliver, S., Hunter, A.J., Brown, S.D. and Steel, K.P. (2003) The deaf mouse mutant Jeff (Jf) is a single gene model of otitis media. J. Assoc. Res. Otolaryngol., 4, 130-138.) and represent a model for chronic forms of OM in humans. We demonstrate here that Jeff carries a mutation in an F-box gene, Fbxo11. Fbxo11 is expressed in epithelial cells of the middle ears from late embryonic stages through to day 13 of postnatal life. In contrast to Jeff heterozygotes, Jeff homozygotes show cleft palate, facial clefting and perinatal lethality. We have also isolated and characterized an additional hypomorphic mutant allele, Mutt. Mutt heterozygotes do not develop OM but Mutt homozygotes also show facial clefting and cleft palate abnormalities. FBXO11 is one of the first molecules to be identified, contributing to the genetic aetiology of OM. In addition, the recessive effects of mutant alleles of Fbxo11 identify the gene as an important candidate for cleft palate studies in the human population.


Subject(s)
F-Box Proteins/genetics , F-Box Proteins/metabolism , Mutation/genetics , Otitis Media/genetics , Otitis Media/pathology , Proteins/genetics , Proteins/metabolism , Alleles , Amino Acid Sequence , Animals , F-Box Proteins/chemistry , Homozygote , Mice , Molecular Sequence Data , Otitis Media/metabolism , Phenotype
4.
Nat Genet ; 38(3): 350-5, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16462745

ABSTRACT

Genomic imprinting results in allele-specific silencing according to parental origin. Silencing is brought about by imprinting control regions (ICRs) that are differentially marked in gametogenesis. The group of imprinted transcripts in the mouse Gnas cluster (Nesp, Nespas, Gnasxl, Exon 1A and Gnas) provides a model for analyzing the mechanisms of imprint regulation. We previously identified an ICR that specifically regulates the tissue-specific imprinted expression of the Gnas gene. Here we identify a second ICR at the Gnas cluster. We show that a paternally derived targeted deletion of the germline differentially methylated region (DMR) associated with the antisense Nespas transcript unexpectedly affects both the expression of all transcripts in the cluster and methylation of two DMRs. Our results establish that the Nespas DMR is the principal ICR at the Gnas cluster and functions bidirectionally as a switch for modulating expression of the antagonistically acting genes Gnasxl and Gnas. Uniquely, the Nespas DMR acts on the downstream ICR at exon 1A to regulate tissue-specific imprinting of the Gnas gene.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/genetics , Genomic Imprinting , RNA, Antisense/genetics , RNA, Untranslated/genetics , Transcription, Genetic , Animals , Chromogranins , DNA Methylation , Exons , Female , Male , Mice , Molecular Sequence Data , Multigene Family , Sequence Deletion
5.
Genetica ; 122(1): 47-9, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15619960

ABSTRACT

With the completion of the first draft of the human genome sequence, the next major challenge is assigning function to genes. One approach is genome-wide random chemical mutagenesis, followed by screening for mutant phenotypes of interest and subsequent mapping and identification of the mutated genes in question. We (a consortium made up of GlaxoSmithKline, the MRC Mammalian Genetics Unit and Mouse Genome Centre, Harwell, Imperial College, London, and the Royal London Hospital) have used ENU mutagenesis in the mouse for the rapid generation of novel mutant phenotypes for use as animal models of human disease and for gene function assignment (Nolan et al., 2000). As of 2003, 35,000 mice have been produced to date in a genome-wide screen for dominant mutations and screened using a variety of screening protocols. Nearly 200 mutants have been confirmed as heritable and added to the mouse mutant catalogue and, overall, we can extrapolate that we have recovered over 700 mutants from the screening programme. For further information on the project and details of the data, see http://www.mgu.har.mrc.ac.uk/mutabase.


Subject(s)
Chromosome Mapping , Disease Models, Animal , Genome , Mice/genetics , Animals , Mutation , Phenotype
6.
Genesis ; 40(2): 109-117, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15384171

ABSTRACT

Dominantly acting mutations that produce visible phenotypes are frequently recovered, either during routine maintenance of colonies or from mutagenesis experiments. We have studied 12 dominant mouse mutations that cause a tail dysmorphology, a coat spotting phenotype, or a combination of these. The majority of these mutations act in a semidominant manner with the homozygous state associated with embryonic lethality and a visible phenotype at or before midgestation. The homozygous phenotypes include axis truncation and neural crest cell defects, as may be expected from the heterozygous phenotypes. The majority of mutations, however, also produced other phenotypes that include neural tube closure defects and aberrant heart looping. In one coat spotting mutant the homozygous condition is lethal before neural crest cell production commences. The mutated genes often function in processes additional to those alluded to by the heterozygous phenotype.


Subject(s)
Embryonic Development/genetics , Genes, Dominant , Mutation , Alkylating Agents/pharmacology , Animals , Animals, Congenic , Biomarkers , Chromosome Mapping , Ethylnitrosourea/pharmacology , Female , Genes, Lethal , Genetic Markers , Genome , Hair Color/genetics , Haplotypes , Homozygote , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Mutant Strains , Mutagens/pharmacology , Polymorphism, Genetic , Tail/abnormalities
7.
Nucleic Acids Res ; 31(3): e9, 2003 Feb 01.
Article in English | MEDLINE | ID: mdl-12560512

ABSTRACT

The potential of expression analysis using cDNA microarrays to address complex problems in a wide variety of biological contexts is now being realised. A limiting factor in such analyses is often the amount of RNA required, usually tens of micrograms. To address this problem researchers have turned to methods of improving detection sensitivity, either through increasing fluorescent signal output per mRNA molecule or increasing the amount of target available for labelling by use of an amplification procedure. We present a novel DNA-based method in which an oligonucleotide is incorporated into the 3' end of cDNA during second-strand cDNA synthesis. This sequence provides an annealing site for a single complementary heel primer that directs Taq DNA polymerase amplification of cDNA following multiple cycles of denaturation, annealing and extension. The utility of this technique for transcriptome-wide screening of relative expression levels was compared to two alternative methodologies for production of labelled cDNA target, namely incorporation of fluorescent nucleotides by reverse transcriptase or the Klenow fragment. Labelled targets from two distinct mouse tissues, adult liver and kidney, were compared by hybridisation to a set of cDNA microarrays containing 6500 mouse cDNA probes. Here we demonstrate, through a dilution series of cDNA derived from 10 micro g of total RNA, that it is possible to produce datasets comparable to those produced with unamplified targets with the equivalent of 30 ng of total RNA. The utility of this technique for microarray analysis in cases where sample is limited is discussed.


Subject(s)
DNA Primers , DNA, Complementary/chemical synthesis , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction/methods , Animals , DNA Polymerase I/metabolism , Female , Mice , RNA-Directed DNA Polymerase/metabolism , Reproducibility of Results , Taq Polymerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...