Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 25(4): 869-73, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25592710

ABSTRACT

A number of prodrugs of HCV-active purine nucleoside analogues 2'-C-methyl 4-aza-9-deaza adenosine 1, 2'-C-methyl 4-aza-7,9-dideaza adenosine 2, 2'-C-methyl 4-aza-9-deaza guanosine 3 and 2'-C-methyl 4-aza-7,9-dideaza guanosine 4 were prepared and evaluated to improve potency, selectivity and liver targeting. Phosphoramidate guanosine prodrugs (3a-3k and 4a, b) showed insufficient cell activity for further profiling. Striking enhancement in replicon activity relative to the parent was observed for phosphoramidate imidazo[2,1-f][1,2,4]triazine-4-amine adenosine prodrugs (1a-1p), but this was accompanied by an increase in cytotoxicity. Improved or similar potency without a concomitant increase in toxicity relative to the parent was demonstrated for phosphoramidate pyrrolo[2,1-f][1,2,4]triazine-4-amine adenosine prodrugs (2a-2k). Carbamate, ester and mixed prodrugs of 2 showed mixed results. Selected prodrugs of 2 were analysed for activation to the triphosphate, with most demonstrating much better activation in hepatocytes over replicon cells. The best activation was observed for a mixed phosphoramidate-3'ester (11) followed by a simple 3'-ester (10).


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Nucleosides/pharmacology , Nucleotides/metabolism , Prodrugs/pharmacology , Triazines/chemistry , Humans , In Vitro Techniques , Nucleosides/chemistry , Prodrugs/chemistry
2.
Bioorg Med Chem Lett ; 24(21): 4984-8, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25288185

ABSTRACT

Previous investigations identified 2'-C-Me-branched ribo-C-nucleoside adenosine analogues, 1, which contains a pyrrolo[2,1-f][1,2,4]triazin-4-amine heterocyclic base, and 2, which contains an imidazo[2,1-f][1,2,4]triazin-4-amine heterocyclic base as two compounds with promising anti-HCV in vitro activity. This Letter describes the synthesis and evaluation of a series of novel analogues of these compounds substituted at the 2-, 7-, and 8-positions of the heterocyclic bases. A number of active new HCV inhibitors were identified but most compounds also demonstrated unacceptable cytotoxicity. However, the 7-fluoro analogue of 1 displayed good potency with a promising cytotherapeutic margin.


Subject(s)
Antiviral Agents/pharmacology , Cell Proliferation/drug effects , Hepacivirus/drug effects , Imidazoles/chemistry , Nucleosides/pharmacology , Pyrroles/chemistry , Triazines/chemistry , Virus Replication/drug effects , Antiviral Agents/chemistry , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Hepacivirus/genetics , Hepatitis C/drug therapy , Hepatitis C/virology , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/virology , Molecular Structure , Nucleosides/chemistry , RNA, Viral/genetics , Structure-Activity Relationship , Tumor Cells, Cultured
3.
ACS Med Chem Lett ; 5(6): 679-84, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24944743

ABSTRACT

Nucleoside analogues have long been recognized as prospects for the discovery of direct acting antivirals (DAAs) to treat hepatitis C virus because they have generally exhibited cross-genotype activity and a high barrier to resistance. C-Nucleosides have the potential for improved metabolism and pharmacokinetic properties over their N-nucleoside counterparts due to the presence of a strong carbon-carbon glycosidic bond and a non-natural heterocyclic base. Three 2'CMe-C-adenosine analogues and two 2'CMe-guanosine analogues were synthesized and evaluated for their anti-HCV efficacy. The nucleotide triphosphates of four of these analogues were found to inhibit the NS5B polymerase, and adenosine analogue 1 was discovered to have excellent pharmacokinetic properties demonstrating the potential of this drug class.

4.
Bioorg Med Chem Lett ; 23(24): 6598-603, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24239017

ABSTRACT

The discovery and optimisation of a new class of benzothiazole small molecules that inhibit bacterial DNA gyrase and topoisomerase IV are described. Antibacterial properties have been demonstrated by activity against DNA gyrase ATPase and potent activity against Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes and Haemophilus influenzae. Further refinements to the scaffold designed to enhance drug-likeness included analogues bearing an α-substituent to the carboxylic acid group, resulting in excellent solubility and favourable pharmacokinetic properties.


Subject(s)
Benzothiazoles/chemistry , Benzothiazoles/pharmacology , DNA Topoisomerase IV/antagonists & inhibitors , Drug Design , Isonipecotic Acids/chemistry , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Benzothiazoles/chemical synthesis , DNA Gyrase/chemistry , DNA Gyrase/metabolism , DNA Topoisomerase IV/metabolism , Enterococcus faecalis/drug effects , Enterococcus faecalis/enzymology , Enzyme Activation/drug effects , Haemophilus influenzae/drug effects , Haemophilus influenzae/enzymology , Half-Life , Mice , Microbial Sensitivity Tests , Rats , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/enzymology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...