Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 96(21): 12010-5, 1999 Oct 12.
Article in English | MEDLINE | ID: mdl-10518567

ABSTRACT

We previously have demonstrated that oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), a component of minimally modified low density lipoprotein (MM-LDL), activates endothelial cells to bind monocytes. 1-Palmitoyl-2- (5-oxovaleroyl)-sn-glycero-3-phosphorylcholine (POVPC) and 1- palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine (PGPC), which are present in OxPAPC, MM-LDL, and atherosclerotic lesions, were shown to have a major role in the activation of endothelial cells. We now demonstrate that these two highly similar molecules have dramatically different effects on leukocyte endothelial interactions. POVPC is a potent regulator of monocyte-specific endothelial interactions. Treatment of endothelial cells with POVPC increased monocyte binding by inducing the surface expression of the connecting segment 1 domain of fibronectin; no increase in neutrophil binding was observed. In addition, POVPC strongly inhibited lipopolysaccharide-mediated induction of neutrophil binding and expression of E-selectin protein and mRNA. This inhibition was mediated by a protein kinase A-dependent pathway, resulting in down-regulation of NF-kappaB-dependent transcription. In contrast, PGPC induced both monocyte and neutrophil binding and expression of E-selectin and vascular cell adhesion molecule 1. We present evidence to suggest that the two phospholipids act by different novel receptors present in Xenopus laevis oocytes and that POVPC, but not PGPC, stimulates a cAMP-mediated pathway. At concentrations equal to that present in MM-LDL, the effect of POVPC dominates and inhibits PGPC-induced neutrophil binding and E-selectin expression in endothelial cells. In summary, our data provide evidence that both POVPC and PGPC are important regulators of leukocyte-endothelial interactions and that POVPC may play a dominant role in a number of chronic inflammatory processes where oxidized phospholipids are known to be present.


Subject(s)
Endothelium, Vascular/physiology , Monocytes/physiology , Neutrophils/physiology , Phospholipid Ethers/pharmacology , Phospholipids/chemistry , Aorta/drug effects , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cell Survival , Cells, Cultured , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dose-Response Relationship, Drug , E-Selectin/metabolism , Endothelium, Vascular/drug effects , Fibronectins/metabolism , Humans , Models, Biological , Monocytes/drug effects , Neutrophils/drug effects , RNA, Messenger/metabolism , Transfection , Up-Regulation , Vascular Cell Adhesion Molecule-1/metabolism
2.
Circ Res ; 80(6): 810-8, 1997 Jun.
Article in English | MEDLINE | ID: mdl-9168783

ABSTRACT

Leukocyte binding to the endothelium is one of the earliest events in the occurrence of atherosclerosis. Leukocyte adhesion molecules involved in this process have not been definitely identified. We have found that treatment of human aortic endothelial cells (HAECs) with minimally modified low-density lipoprotein (MM-LDL) for 24 hours caused a 2- to 3-fold increase of P-selectin protein, with little change in P-selectin surface expression. A 15-minute histamine treatment of cells exposed to MM-LDL caused a 50% to 100% increase in P-selectin surface expression compared with cells not treated with the lipoprotein. This increase resulted in a 2-fold increase in binding of leukocytes to the endothelium. Immunostaining of permeabilized HAECs after MM-LDL treatment also revealed a highly reproducible increase in intracellular P-selectin associated with rod-shaped structures, typical of Weibel-Palade bodies. Oxidized phospholipids were shown to be mainly responsible for the action of MM-LDL. This increased P-selectin expression was associated with MM-LDL-induced cAMP elevation. Like histamine, highly oxidized low-density lipoprotein, especially the oxidized fatty acids, caused immediate redistribution of P-selectin to the cell surface followed by reinternalization. Immunohistochemical staining showed that endothelial cells on human fatty streak lesions expressed increased levels of P-selectin compared with nonlesion areas. These studies suggest that P-selectin may play an important role in early recruitment of mononuclear cells to the subendothelium in human atherosclerosis and that oxidized lipoproteins may contribute to the increased expression of this molecule by increasing intracellular stores and causing redistribution to the cell surface.


Subject(s)
Lipoproteins, LDL/pharmacology , P-Selectin/metabolism , Aorta/cytology , Aorta/drug effects , Aorta/metabolism , Arteriosclerosis/metabolism , Cell Membrane/metabolism , Cells, Cultured , Chemical Fractionation , Cyclic AMP/physiology , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Humans , Immunohistochemistry , Lipids/pharmacology , P-Selectin/biosynthesis , P-Selectin/physiology
3.
J Neurocytol ; 26(2): 63-75, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9181481

ABSTRACT

Molecules localized to the synapse are potential contributors to processes unique to this specialized region, such as synapse formation and maintenance and synaptic transmission. We used an immunohistochemical strategy to uncover such molecules by generating antibodies that selectively stain synaptic regions and then using the antibodies to analyse their antigens. In this study, we utilized a monoclonal antibody, mAb 6D7, to identify and characterize an antigen concentrated at frog neuromuscular junctions and in peripheral nerves. In adult muscle, immunoelectron microscopy indicates that the antigen is located in the extracellular matrix around perisynaptic Schwann cell at the neuromuscular junction and in association with myelinated and nonmyelinated axons in peripheral nerves. The maintenance of the mAb 6D7 epitope is innervation-dependent but is muscle-independent; it disappears from the synaptic region within 2 weeks after denervation, but persists after muscle damage when the nerve is left intact. mAb 6D7 immunolabelling is also detected at the neuromuscular junction in developing tadpoles. Biochemical analyses of nerve extracts indicate that mAb 6D7 recognizes a glycoprotein of 127 kDa with both N- and O-linked carbohydrate moieties. Taken together, the results suggest that the antigen recognized by mAb 6D7 may be a novel component of the synaptic extracellular matrix overlying the terminal Schwann cell. The innervation-sensitivity of the epitope at the neuromuscular junction suggests a function in the interactions between nerves and Schwann cells.


Subject(s)
Extracellular Matrix/physiology , Muscle, Skeletal/innervation , Nerve Tissue Proteins/analysis , Neuromuscular Junction/physiology , Peripheral Nerves/physiology , Schwann Cells/physiology , Animals , Antibodies, Monoclonal , Epitopes/analysis , Extracellular Matrix/ultrastructure , Female , Immunohistochemistry , Male , Membrane Glycoproteins/analysis , Mice , Mice, Inbred BALB C , Microscopy, Immunoelectron , Muscle Denervation , Neuromuscular Junction/ultrastructure , Peripheral Nerves/ultrastructure , Rana pipiens , Schwann Cells/ultrastructure , Synapses/physiology , Synapses/ultrastructure , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...