Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Immunol ; 166: 16-28, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181455

ABSTRACT

Over 500 million people worldwide are affected by diabetes mellitus, a chronic disease that leads to high blood glucose levels and causes severe side effects. The predominant biological marker for diagnosis of diabetes is glycated haemoglobin (GHb). In human blood the predominant reducing sugar, glucose, irreversibly conjugates onto accessible amine groups within Hb. Most methods for diagnosis and monitoring of diabetes selectively detect N-terminal glycation at Val-1 on the ß-globin chain, but not glycation at other sites. Detection of other glycated epitopes of GHb has the potential to provide new information on the extent, duration and timing of elevated glucose, facilitating personalised diagnosis and intelligent diabetic control. In this work, a new anti-GHb Fab antibody (Fab-1) specific for haemoglobin A1c (HbA1c) with nanomolar affinity was discovered via epitope-directed immunisation and phage display. A single chain variable fragment (scFv) antibody derived from Fab-1 retained affinity and specificity for HbA1c, and affinity was enhanced tenfold upon addition of an enhanced green fluorescent protein tag. Both the scFv and Fab-1 recognised an epitope within HbA1c that was distinct from ß-Val-1, and our data suggest that this epitope may include glycation at Lys-66 in the ß-globin chain. To our knowledge, this is the first report of an scFv/Fab anti-glycated epitope antibody that recognises a non-A1c epitope in GHb, and confirms that fructosamine attached to different, discrete glycation sites within the same protein can be resolved from one another by immunoassay.


Subject(s)
Diabetes Mellitus , Single-Chain Antibodies , Sodium Oxybate , Humans , Glycated Hemoglobin , Epitopes , Glucose , beta-Globins
2.
Nanoscale ; 8(23): 11834-9, 2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27228183

ABSTRACT

Acute pancreatitis is a relatively common and potentially fatal condition, but the presenting symptoms are non-specific and diagnosis relies largely on the measurement of amylase activity by the hospital clinical laboratory. In this work we develop a point of care test for pancreatitis measuring concentration of secretory phospholipase A2 group IB (sPLA2-IB). Novel antibodies for sPLA2-IB were raised and used to design an ELISA and a lateral flow device (LFD) for the point of care measurement of sPLA2-IB concentration, which was compared to pancreatic amylase activity, lipase activity, and sPLA2-IB activity in 153 serum samples. 98 of these samples were obtained from the pathology unit of a major hospital and classified retrospectively according to presence or absence of pancreatitis, and the remaining 55 were obtained from commercial sources to serve as high lipase (n = 20), CA19-9 positive (n = 15), and healthy (n = 20) controls. sPLA2-IB concentration correlated well with the serum activity of both amylase and lipase, and performed at least as well as either markers in the differentiation of pancreatitis from controls.


Subject(s)
Amylases/blood , Lipase/blood , Pancreatitis/diagnosis , Phospholipases A2/blood , Point-of-Care Systems , Acute Disease , Humans
3.
Nanoscale ; 8(8): 4482-5, 2016 Feb 28.
Article in English | MEDLINE | ID: mdl-26854217

ABSTRACT

Secretory phospholipase A2 group IIA (sPLA2-IIA) was examined as a point of care marker for determining disease activity in rheumatoid (RA) and psoriatic (PsA) arthritis. Serum concentration and activity of sPLA2-IIA were measured using in-house antibodies and a novel point of care lateral flow device assay in patients diagnosed with varying severities of RA (n = 30) and PsA (n = 25) and found to correlate strongly with C-reactive protein (CRP). Levels of all markers were elevated in patients with active RA over those with inactive RA as well as both active and inactive PsA, indicating that sPLA2-IIA can be used as an analogue to CRP for RA diagnosis at point of care.


Subject(s)
Arthritis, Rheumatoid/diagnosis , Group II Phospholipases A2/blood , Adult , Aged , Arthritis, Psoriatic/diagnosis , Biomarkers/blood , C-Reactive Protein , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Point-of-Care Testing
4.
ACS Nano ; 9(3): 2565-2573, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25756526

ABSTRACT

A rapid and highly sensitive point-of-care (PoC) lateral flow assay for phospholipase A2 (PLA2) is demonstrated in serum through the enzyme-triggered release of a new class of biotinylated multiarmed polymers from a liposome substrate. Signal from the enzyme activity is generated by the adhesion of polystreptavidin-coated gold nanoparticle networks to the lateral flow device, which leads to the appearance of a red test line due to the localized surface plasmon resonance effect of the gold. The use of a liposome as the enzyme substrate and multivalent linkers to link the nanoparticles leads to amplification of the signal, as the cleavage of a small amount of lipids is able to release a large amount of polymer linker and adhesion of an even larger amount of gold nanoparticles. By optimizing the molecular weight and multivalency of these biotinylated polymer linkers, the sensitivity of the device can be tuned to enable naked-eye detection of 1 nM human PLA2 in serum within 10 min. This high sensitivity enabled the correct diagnosis of pancreatitis in diseased clinical samples against a set of healthy controls using PLA2 activity in a point-of-care device for the first time.


Subject(s)
Blood Chemical Analysis/methods , Nanoparticles/chemistry , Nanotechnology/methods , Phospholipases A2/blood , Phospholipases A2/metabolism , Point-of-Care Systems , Acute Disease , Animals , Biotin/chemistry , Elapidae , Female , Humans , Liposomes/metabolism , Male , Models, Molecular , Pancreatitis/diagnosis , Pancreatitis/enzymology , Phospholipases A2/chemistry , Polyethylene Glycols/chemistry , Protein Conformation
5.
Am J Hum Genet ; 84(6): 780-91, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19500772

ABSTRACT

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a rare, neonatally lethal developmental disorder of the lung with defining histologic abnormalities typically associated with multiple congenital anomalies (MCA). Using array CGH analysis, we have identified six overlapping microdeletions encompassing the FOX transcription factor gene cluster in chromosome 16q24.1q24.2 in patients with ACD/MPV and MCA. Subsequently, we have identified four different heterozygous mutations (frameshift, nonsense, and no-stop) in the candidate FOXF1 gene in unrelated patients with sporadic ACD/MPV and MCA. Custom-designed, high-resolution microarray analysis of additional ACD/MPV samples revealed one microdeletion harboring FOXF1 and two distinct microdeletions upstream of FOXF1, implicating a position effect. DNA sequence analysis revealed that in six of nine deletions, both breakpoints occurred in the portions of Alu elements showing eight to 43 base pairs of perfect microhomology, suggesting replication error Microhomology-Mediated Break-Induced Replication (MMBIR)/Fork Stalling and Template Switching (FoSTeS) as a mechanism of their formation. In contrast to the association of point mutations in FOXF1 with bowel malrotation, microdeletions of FOXF1 were associated with hypoplastic left heart syndrome and gastrointestinal atresias, probably due to haploinsufficiency for the neighboring FOXC2 and FOXL1 genes. These differences reveal the phenotypic consequences of gene alterations in cis.


Subject(s)
Bronchopulmonary Dysplasia/genetics , Chromosomes, Human, Pair 16/genetics , Forkhead Transcription Factors/genetics , Gene Deletion , Gene Silencing , Mutation/genetics , Pulmonary Alveoli/pathology , Abnormalities, Multiple/genetics , Capillaries/abnormalities , Child, Preschool , Chromosome Mapping , Doxorubicin/analogs & derivatives , Female , Humans , In Situ Hybridization, Fluorescence , Infant , Infant, Newborn , Male , Pulmonary Alveoli/blood supply , Pulmonary Veins/abnormalities
6.
Science ; 318(5855): 1458-61, 2007 Nov 30.
Article in English | MEDLINE | ID: mdl-18048690

ABSTRACT

How chaperone interactions affect protein folding pathways is a central problem in biology. With the use of optical tweezers and all-atom molecular dynamics simulations, we studied the effect of chaperone SecB on the folding and unfolding pathways of maltose binding protein (MBP) at the single-molecule level. In the absence of SecB, we find that the MBP polypeptide first collapses into a molten globulelike compacted state and then folds into a stable core structure onto which several alpha helices are finally wrapped. Interactions with SecB completely prevent stable tertiary contacts in the core structure but have no detectable effect on the folding of the external alpha helices. It appears that SecB only binds to the extended or molten globulelike structure and retains MBP in this latter state. Thus during MBP translocation, no energy is required to disrupt stable tertiary interactions.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli Proteins/chemistry , Periplasmic Binding Proteins/chemistry , Protein Folding , Computer Simulation , Escherichia coli Proteins/metabolism , Models, Molecular , Optical Tweezers , Periplasmic Binding Proteins/metabolism , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...