Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Energy Convers Manag ; 244: None, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34538999

ABSTRACT

In this study, stack design for high concentration gradient reverse electrodialysis operating in recycle is addressed. High concentration gradients introduce complex transport phenomena, which are exacerbated when recycling feeds; a strategy employed to improve system level energy efficiency. This unique challenge indicates that membrane properties and spacer thickness requirements may differ considerably from reverse electrodialysis for lower concentration gradients (e.g. seawater/river water), drawing closer parallels to electrodialysis stack design. Consequently, commercially available electrodialysis and reverse electrodialysis stack design was first compared for power generation from high concentration gradients. Higher gross power densities were identified for the reverse electrodialysis stack, due to the use of thinner membranes characterised by a higher permselectivity, which improved current. However, energy efficiency of the electrodialysis stack was twice that recorded for the reverse electrodialysis stack at low current densities, which was attributed to: (i) an increased residence time provided by the larger intermembrane distance, and (ii) reduced exergy losses of the electrodialysis membranes, which provided comparatively lower water permeance. Further in-depth investigation into membrane properties and spacer thickness identified that membranes characterised by an intermediate water permeability and ohmic resistance provided the highest power density and energy efficiency (Neosepta ACS/CMS), while wider intermembrane distances up to 0.3 mm improved energy efficiency. This study confirms that reverse electrodialysis stacks for high concentration gradients in recycle therefore demand design more comparable to electrodialysis stacks to drive energy efficiency, but when selecting membrane properties, the trade-off with permselectivity must also be considered to ensure economic viability.

2.
J Memb Sci ; 627: 119245, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34083864

ABSTRACT

Whilst reverse electrodialysis (RED) has been extensively characterised for saline gradient energy from seawater/river water (0.5 M/0.02 M), less is known about RED stack design for high concentration salinity gradients (4 M/0.02 M), important to closed loop applications (e.g. thermal-to-electrical, energy storage). This study therefore focuses on the scale-up of RED stacks for high concentration salinity gradients. Higher velocities were required to attain a maximum Open Circuit Voltage (OCV) for 4 M/0.02 M, which gives a measure of the electrochemical potential of the cell. The experimental OCV was also much below the theoretical OCV, due to the greater boundary layer resistance observed, which is distinct from 0.5 M/0.02 M. However, negative net power density (net produced electrical power divided by total membrane area) was demonstrated with 0.5 M/0.02 M for larger stacks using shorter residence times (three stack sizes tested: 10 × 10cm, 10 × 20cm and 10 × 40cm). In contrast, the highest net power density was observed at the shortest residence time for the 4 M/0.02 M concentration gradient, as the increased ionic flux compensated for the pressure drop. Whilst comparable net power densities were determined for the 10 × 10cm and 10 × 40cm stacks using the 4 M/0.02 M concentration gradient, the osmotic and ionic transport mechanisms are distinct. Increasing cell pair number improved maximum current density. This subsequently increased power density, due to the reduction in boundary layer resistance, and may therefore be used to improve thermodynamic efficiency and power density from RED for high concentrations. Although comparable power densities may be achieved for small and large stacks, large stacks maybe preferred for high concentration salinity gradients due to the comparative benefit in thermodynamic efficiency in single pass. The greater current achieved by large stacks may also be complemented by an increase in cell pair number and current density optimisation to increase power density and reduce exergy losses.

3.
Sep Purif Technol ; 263: 118390, 2021 May 15.
Article in English | MEDLINE | ID: mdl-34002109

ABSTRACT

Water recovery from concentrated blackwater has been studied using air gap (AGMD), direct contact (DCMD) and vacuum membrane distillation (VMD) to deliver decentralised sanitation. Whilst good water quality was achieved with each configuration, differences in the rejection of volatile compounds was observed. VMD exhibited the highest rejection of volatiles, specifically ammoniacal nitrogen, of all the configurations but fouling inhibited total flux. DCMD exhibited a temperature dependent volatile rejection which resulted in poor rejection at lower feed temperatures (≤40 °C). AGMD was identified as the most promising configuration for application within decentralised sanitation, since the rejection of volatiles was consistent over a range of operating temperatures with ammonia rejection directly related to solution pH. An increase in organic colloids and particles due to faecal contamination reduced COD removal due to the induction of wetting, but was shown to be offset by adoption of a smaller pore size (0.1 µm), and when complemented with upstream solid-liquid separation within a fully integrated system, will provide a robust sanitation solution. Importantly, this work has shown that AGMD can recover water from concentrated blackwater close to international discharge and reuse regulations in a single stage process; this is significant as blackwater consists of only urine and faeces, and is thus 40 times more concentrated than municipal sewage. It is proposed that the water quality produced reflects a step change to delivering safe sanitation, and is complemented by a simple method for heat recovery integration this is similarly advantageous for resource constrained environments common to decentralised sanitation solutions.

4.
Sci Total Environ ; 752: 141705, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32892039

ABSTRACT

E. coli survival in biosolids storage may present a risk of non-compliance with guidelines designed to ensure a quality product safe for agricultural use. The storage environment may affect E. coli survival but presently, storage characteristics are not well profiled. Typically biosolids storage environments are not actively controlled or monitored to support increased product quality or improved microbial compliance. This two-phased study aimed to identify the environmental factors that control bacterial concentrations through a long term, controlled monitoring study (phase 1) and a field-scale demonstration trial modifying precursors to bacterial growth (phase 2). Digested and dewatered biosolids were stored in operational-scale stockpiles to elucidate factors controlling E. coli dynamics. E. coli concentrations, stockpile dry solids, temperature, redox and ambient weather data were monitored. Results from ANCOVA analysis showed statistically significant (p < 0.05) E. coli reductions across storage periods with greater die-off in summer months. Stockpile temperature had a statistically significant effect on E. coli survival. A 4.5 Log reduction was measured in summer (maximum temperature 31 °C). In the phase 2 modification trials, covered stockpiles were able to maintain a temperature >25 °C for a 28 day period and achieved a 3.7 Log E. coli reduction. In winter months E. coli suppression was limited with concentrations >6 Log10 CFU g-1 DS maintained. The ANCOVA analysis has identified the significant role that physical environmental factors, such as stockpile temperature, has on E. coli dynamics and the opportunities for control.


Subject(s)
Escherichia coli , Sewage , Agriculture , Bacteria , Biosolids , Colony Count, Microbial , Temperature
5.
Desalination ; 496: 114711, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33335330

ABSTRACT

Whilst the efficiency of reverse electrodialysis (RED) for thermal-to-electrical conversion has been theoretically demonstrated for low-grade waste heat, the specific configuration and salinity required to manage power generation has been less well described. This study demonstrates that operating RED by recycling feed solutions provides the most suitable configuration for energy recovery from a fixed solution volume, providing a minimum unitary cost for energy production. For a fixed membrane area, recycling feeds achieves energy efficiency seven times higher than single pass (conventional operation), and with an improved power density. However, ionic transport, water flux and concentration polarisation introduce complex temporal effects when concentrated brines are recirculated, that are not ordinarily encountered in single pass systems. Regeneration of the concentration gradient at around 80% energy dissipation was deemed most economically pragmatic, due to the increased resistance to mass transport beyond this threshold. However, this leads to significant exergy destruction that could be improved by interventions to better control ionic build up in the dilute feed. Further improvements to energy efficiency were fostered through optimising current density for each brine concentration independently. Whilst energy efficiency was greatest at lower brine concentrations, the work produced from a fixed volume of feed solution was greatest at higher saline concentrations. Since the thermal-to-electrical conversion proposed is governed by volumetric heat utilisation (distillation to reset the concentration gradient), higher brine concentrations are therefore recommended to improve total system efficiency. Importantly, this study provides new evidence for the configuration and boundary conditions required to realise RED as a practical solution for application to sources of low-grade waste heat in industry.

6.
Sep Purif Technol ; 253: 117547, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33335447

ABSTRACT

In this study, the pretreatment of concentrated blackwater using ultrafiltration (UF) was shown to improve the permeability, selectivity and robustness of membrane distillation (MD) for application to wastewater treatment. Concentrated blackwater comprises urine and faeces, with minimal flushwater added. The faecal contribution increased the soluble organic fraction and introduced coarse and colloidal particles into the urine, which increased resistance to filtration during dead-end UF. Ultrafiltration removed the particulate and colloidal fractions (MW > 500 kDa) from the blackwater, which permitted similar permeability and robustness for MD to that observed with urine (29.9 vs 25.9 kg m-2 h-1), which comprises a lower colloidal organic concentration. Without UF pretreatment, a higher density organic layer formed on the MD surface (197 vs 70 gCOD m-2) which reduced mass transfer, and transformed the contact angle from hydrophobic to hydrophilic (144.9° to 49.8°), leading to pore wetting and a dissipation in product water quality due to breakthrough. In comparison, with UF pretreatment, MD delivered permeate water quality to standards satisfactory for discharge or reuse. This is particularly timely as the ISO standard for non-sewered sanitation has been adopted by several countries at a national level, and to date there are relatively few technologies to achieve the treatment standard. Membrane distillation provides a robust means for concentrated blackwater treatment, and since the energy required for separation is primarily heat, this advanced treatment can be delivered into areas with more fragile power networks.

7.
J Environ Manage ; 272: 111052, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32669254

ABSTRACT

Intensive farming is widespread throughout the UK and yet the health effects of bioaerosols which may be generated by these sites are currently not well researched. A scoping study was established to measure bioaerosols emitted from intensive pig (n = 3) and poultry farms (n = 3) during the period 2014-2015. The concentration of culturable mesophilic bacteria, Gram-negative bacteria, Staphylococcus spp., and fungi selecting for presumptive Aspergillus fumigatus were measured using single-stage impaction Andersen samplers, whilst endotoxin and (1 â†’ 3)-ß-D-glucan was undertaken using inhalable personal samplers. Particulate matter concentration was determined using an optical particulate monitor. Results showed that culturable bacteria, fungi, presumptive Staphylococcus aureus (confirmed only as Staphylococcus spp.) and endotoxin concentrations were elevated above background concentrations for distances of up to 250 m downwind of the source. Of all the culturable bioaerosols measured, bacteria and Staphylococcus spp. were identified as the most significant, exceeding published or proposed bioaerosol guidelines in the UK. In particular, culturable Staphylococcus spp. downwind was at least 61 times higher than background at the boundary and at least 8 times higher 70m downwind on the four farms tested. This research represents a novel dataset of intensive farm emissions within the UK. Future research should exploit the use of innovative culture-independent methods such as next generation sequencing to develop deeper insights into the make-up of microbial communities emitted from intensive farming facilities and which would better inform species of interest from a public health perspective.


Subject(s)
Air Microbiology , Livestock , Aerosols/analysis , Animals , Environmental Monitoring , Farms , Fungi , Poultry , Swine
8.
Dry Technol ; 38(14): 1819-1827, 2020.
Article in English | MEDLINE | ID: mdl-33767602

ABSTRACT

The non-isothermal drying behavior and kinetics of human feces (HF) were investigated by means of thermogravimetric analysis to provide data for designing a drying unit operation. The effect of heating rate and blending with woody biomass were also evaluated on drying pattern and kinetics. At low heating rate (1 K/min), there is effective transport of moisture, but a higher heating rate would be necessary at low moisture levels to reduce drying time. Blending with wood biomass improves drying characteristics of HF. The results presented in this study are relevant for designing non-sewered sanitary systems with in-situ thermal treatment.

9.
J Memb Sci ; 584: 343-352, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31423048

ABSTRACT

The integration of membrane distillation with reverse electrodialysis has been investigated as a sustainable sanitation solution to provide clean water and electrical power from urine and waste heat. Reverse electrodialysis was integrated to provide the partial remixing of the concentrate (urine) and diluate (permeate) produced from the membrane distillation of urine. Broadly comparable power densities to those of a model salt solution (sodium chloride) were determined during evaluation of the individual and combined contribution of the various monovalent and multivalent inorganic and organic salt constituents in urine. Power densities were improved through raising feed-side temperature and increasing concentration in the concentrate, without observation of limiting behaviour imposed by non-ideal salt and water transport. A further unique contribution of this application is the limited volume of salt concentrate available, which demanded brine recycling to maximise energy recovery analogous to a battery, operating in a 'state of charge'. During recycle, around 47% of the Gibbs free energy was recoverable with up to 80% of the energy extractable before the concentration difference between the two solutions was halfway towards equilibrium which implies that energy recovery can be optimised with limited effect on permeate quality. This study has provided the first successful demonstration of an integrated MD-RED system for energy recovery from a limited resource, and evidences that the recovered power is sufficient to operate a range of low current fluid pumping technologies that could help deliver off-grid sanitation and clean water recovery at single household scale.

10.
Renew Energy ; 132: 1177-1184, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31007417

ABSTRACT

The "Reinvent the Toilet Challenge" set by the Bill & Melinda Gates Foundation aims to bring access to adequate sanitary systems to billions of people. In response to this challenge, on-site sanitation systems are proposed and being developed globally. These systems require in-situ thermal treatment, processes that are not well understood for human faeces (HF). Thermogravimetric analysis has been used to investigate the pyrolysis, gasification and combustion of HF. The results are compared to the thermal behaviour of simulant faeces (SF) and woody biomass (WB), along with the blends of HF and WB. Kinetic analysis was conducted using non-isothermal kinetics model-free methods, and the thermogravimetric data obtained for the combustion of HF, SS and WB. The results show that the devolatilisation of HF requires higher temperatures and rates are slower those of WB. Minimum temperatures of 475 K are required for fuel ignition. HF and SF showed similar thermal behaviour under pyrolysis, but not under combustion conditions. The activation energy for HF is 157.4 kJ/mol, relatively higher than SS and WB. Reaction order for HF is lower (n = 0.4) to WB (n = 0.6). In-situ treatment of HF in on-site sanitary systems can be designed for slow progressive burn.

SELECTION OF CITATIONS
SEARCH DETAIL