Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 279(45): 46497-508, 2004 Nov 05.
Article in English | MEDLINE | ID: mdl-15319437

ABSTRACT

We have recently reported that two typical Gs-coupled receptors, the beta2-adrenergic receptor and the receptor for prostaglandin E1, stimulate phospholipase C-epsilon (PLC-epsilon) and increase intracellular Ca2+ concentration ([Ca2+]i) in HEK-293 cells and N1E-115 neuroblastoma cells, respectively, by a pathway involving Epac1, a cAMP-activated and Rap-specific guanine nucleotide exchange factor (GEF), and the GTPase Rap2B. Here we have demonstrated that these Gs-coupled receptors use this pathway to activate H-Ras and the extracellular signal-regulated kinases 1 and 2 (ERK1/2). Specifically, agonist activation of the receptors resulted in activation of H-Ras and ERK1/2. The latter action was suppressed by dominant negative H-Ras, but not Rap1A. The receptor actions were independent of protein kinase A but fully mimicked by an Epac-specific cAMP analog as well as by a constitutively active Rap2B mutant. On the other hand, a cAMP-binding-deficient Epac1 mutant, the Rap GTPase-activating proteinII, and a dominant negative Rap2B mutant suppressed receptor- and Epac-mediated activation of H-Ras and ERK1/2. Finally, we have demonstrated that activation of H-Ras and ERK1/2 requires the lipase activity of PLC-epsilon and the subsequent [Ca2+]i increase, suggesting that H-Ras activation is mediated by a Ca2+ -activated GEF. In line with this hypothesis, receptor-mediated activation of H-Ras and ERK1/2 was strongly enhanced by expression of RasGRP1, a Ca2+ -regulated Ras-GEF. Collectively, our data indicated that Gs-coupled receptors can activate H-Ras and subsequently the mitogen-activated protein kinases ERK1/2 by a Ca2+ -activated Ras-GEF, possibly RasGRP1, mediated by cAMP-activated Epac proteins, which then lead via Rap2B and PLC-epsilon stimulation to [Ca2+]i increase.


Subject(s)
Calcium/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Guanine Nucleotide Exchange Factors/physiology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , ras Proteins/metabolism , Animals , Cell Line , Cell Line, Tumor , Cyclic AMP/metabolism , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Drug , Enzyme Activation , Guanine Nucleotide Exchange Factors/metabolism , Humans , Immunoblotting , MAP Kinase Signaling System , Phosphoinositide Phospholipase C , Plasmids/metabolism , Rats , Time Factors , Transfection , Type C Phospholipases/metabolism
2.
J Biol Chem ; 277(19): 16805-13, 2002 May 10.
Article in English | MEDLINE | ID: mdl-11877431

ABSTRACT

Stimulation of phospholipase C (PLC) by G(q)-coupled receptors such as the M(3) muscarinic acetylcholine receptor (mAChR) is caused by direct activation of PLC-beta enzymes by Galpha(q) proteins. We have recently shown that G(s)-coupled receptors can stimulate PLC-epsilon, apparently via formation of cyclic AMP and activation of the Ras-related GTPase Rap2B. Here we report that PLC stimulation by the M(3) mAChR expressed in HEK-293 cells also involves, in part, similar mechanisms. M(3) mAChR-mediated PLC stimulation and [Ca(2+)](i) increase were reduced by 2',5'-dideoxyadenosine (dd-Ado), a direct adenylyl cyclase inhibitor. On the other hand, overexpression of Galpha(s) or Epac1, a cyclic AMP-regulated guanine nucleotide exchange factor for Rap GTPases, enhanced M(3) mAChR-mediated PLC stimulation. Inactivation of Ras-related GTPases with clostridial toxins suppressed the M(3) mAChR responses. The inhibitory toxin effects were mimicked by expression of inactive Rap2B, but not of other inactive GTPases (Rac1, Ras, RalA, Rap1A, and Rap2A). Activation of the M(3) mAChR induced GTP loading of Rap2B, an effect strongly enhanced by overexpression of Galpha(s) and inhibited by dd-Ado. Overexpression of PLC-epsilon and PLC-beta1, but not PLC-gamma1 or PLC-delta1, enhanced M(3) mAChR-mediated PLC stimulation and [Ca(2+)](i) increase. In contrast, expression of a catalytically inactive PLC-epsilon mutant reduced PLC stimulation by the M(3) mAChR and abrogated the potentiating effect of Galpha(s). In conclusion, our findings suggest that PLC stimulation by the M(3) mAChR is a composite action of PLC-beta1 stimulation by Galpha(q) and stimulation of PLC-epsilon apparently mediated by G(s)-dependent cyclic AMP formation and subsequent activation of Rap2B.


Subject(s)
Cyclic AMP/metabolism , Receptors, Muscarinic/metabolism , Type C Phospholipases/chemistry , Type C Phospholipases/metabolism , rap GTP-Binding Proteins/metabolism , Calcium/metabolism , Carbachol/pharmacology , Cell Line , DNA, Complementary/metabolism , Deoxyadenine Nucleotides/pharmacology , Dideoxynucleotides , GTP Phosphohydrolases/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Humans , Immunoblotting , Mutation , Phosphoinositide Phospholipase C , Plasmids/metabolism , Protein Binding , Protein Isoforms , Receptor, Muscarinic M3 , Signal Transduction , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...