Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893922

ABSTRACT

In this research, the properties and cementitious performance of thermally activated cement pastes (referred to as DCPs) are investigated. Hydrated pastes prepared from Portland cement and slag blended cement were subjected to different thermal treatments: 350 °C for 2 h, 550 °C for 2 h, 550 °C for 24 h and 750 °C for 2 h. The properties and the reactivity as SCM of the DCPs were characterised as well as their effect on the mechanical performance and hydration of new blended cements incorporating the DCPs as supplementary cementitious materials (SCMs). It was observed that the temperature and duration of the thermal treatment increased the grindability and BET specific surface area of the DCP, as well as the formation of C2S phases and the reactivity as SCM. In contrast, the mechanical strength results for the blended cements indicated that thermal treatment at 350 °C for 2 h provided better performance. The hydration study results showed that highly reactive DCP interfered with the early hydration of the main clinker phases in Portland cement, leading to early setting and slow strength gain. The effect on blended cement hydration was most marked for binary Portland cement-DCP blends. In contrast, in the case of ternary slag cement-DCP blends the use of reactive DCP as SCM enabled to significantly increase early age strength.

2.
Materials (Basel) ; 12(3)2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30709016

ABSTRACT

This work aims to study an aluminosilicate phosphate cementitious matrix. The cementitious matrix was studied on paste samples. The synthesis of metakaolinite phosphate cement (MKPC) was investigated using calorimetric techniques. A systematic study was performed by emphasizing a broad range of Al/P molar ratios, covering the different behavior of the material to the extremes, as well as the optimum composition. X-ray diffraction and scanning electron microscopy revealed that the final structure was mainly an amorphous network, albeit with some non-reacted phases. The compressive strength was studied on mortars using a cement/sand ratio of 1:3. MKPC specimens with Al/P ratios close to 1/1 showed optimal behavior. MKPCs with Al/P ratios above 1/1 were characterized by high porosity and low strength, whereas MKPCs with Al/P < 1 contained an excess of phosphates. The influence of the Al/P molar ratio on compressive strength was also studied, reaching a maximum of 68 MPa for the optimum composition. Based on the results, MKPC may be a promising candidate for construction purposes.

SELECTION OF CITATIONS
SEARCH DETAIL
...