Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 18: 1374781, 2024.
Article in English | MEDLINE | ID: mdl-38595977

ABSTRACT

Introduction: Imprinted genes are expressed from one parental allele as a consequence of epigenetic processes initiated in the germline. Consequently, their ability to influence phenotype depends on their parent-of-origin. Recent research suggests that the sex of the individual expressing the imprinted gene is also important. We have previously reported that genetically wildtype (WT) dams carrying and caring for pups mutant for PEG3 exhibit anxiety-like behaviours and their mutant pups show a reduction in ultrasonic vocalisation when separated from their mothers. Sex-specificity was not examined. Methods: WT female mice were mated with WT, heterozygous Peg3-/+ or homozygous Peg3-/- studs to generate all WT (control), 50:50 mixed or 100% mutant litters, respectively, followed by behavioural assessment of both dams and their pups. Results: We reproduced our original finding that WT dams carrying and caring for 100% mutant litters exhibit postpartum anxiety-like symptoms and delayed pup retrieval. Additionally, these WT dams were found to allocate less time to pup-directed care behaviours relative to controls. Male Peg3-deficient pups demonstrated significantly reduced vocalisation with a more subtle communication deficit in females. Postweaning, male mutants exhibited deficits across a number of key social behaviours as did WT males sharing their environment with mutants. Only modest variations in social behaviour were detected in experimental females. Discussion: We have experimentally demonstrated that Peg3 deficiency confined to the offspring causes anxiety in mouse mothers and atypical behaviour including deficits in communication in their male offspring. A male-specific reduction in expression PEG3 in the fetally-derived placenta has previously been associated with maternal depression in human pregnancy. Maternal mood disorders such as depression and anxiety are associated with delays in language development and neuroatypical behaviour more common in sons. Peg3 deficiency could drive the association of maternal and offspring behavioural disorders reported in humans.

2.
J Nonverbal Behav ; 47(2): 117-210, 2023.
Article in English | MEDLINE | ID: mdl-37162792

ABSTRACT

Behavioural coding is time-intensive and laborious. Thin slice sampling provides an alternative approach, aiming to alleviate the coding burden. However, little is understood about whether different behaviours coded over thin slices are comparable to those same behaviours over entire interactions. To provide quantitative evidence for the value of thin slice sampling for a variety of behaviours. We used data from three populations of parent-infant interactions: mother-infant dyads from the Grown in Wales (GiW) cohort (n = 31), mother-infant dyads from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort (n = 14), and father-infant dyads from the ALSPAC cohort (n = 11). Mean infant ages were 13.8, 6.8, and 7.1 months, respectively. Interactions were coded using a comprehensive coding scheme comprised of 11-14 behavioural groups, with each group comprised of 3-13 mutually exclusive behaviours. We calculated frequencies of verbal and non-verbal behaviours, transition matrices (probability of transitioning between behaviours, e.g., from looking at the infant to looking at a distraction) and stationary distributions (long-term proportion of time spent within behavioural states) for 15 thin slices of full, 5-min interactions. Measures drawn from the full sessions were compared to those from 1-, 2-, 3- and 4-min slices. We identified many instances where thin slice sampling (i.e., < 5 min) was an appropriate coding method, although we observed significant variation across different behaviours. We thereby used this information to provide detailed guidance to researchers regarding how long to code for each behaviour depending on their objectives.

3.
J Psychiatr Res ; 150: 47-53, 2022 06.
Article in English | MEDLINE | ID: mdl-35354099

ABSTRACT

Altered serum levels of brain-derived neurotrophic factor (BDNF) are consistently linked with neurological disorders. BDNF is also increasingly implicated in the pathogenesis of neurodevelopmental disorders, particularly those found more frequently in males. At birth, male infants naturally have significantly lower serum BDNF levels (∼10-20% lower than females), which may render them more vulnerable to neurodevelopmental disorders. We previously characterized serum BDNF levels in mothers and their newborn infants as part of the Grown in Wales Study. Here, we analyzed whether cord serum BDNF levels at birth correlate with sex-specific outcomes at one year. The Bayley Scale of Infant Development, Third Edition (BSID-III) and Laboratory Temperament Assessment Battery (Lab-TAB) tasks were used to assess infant behavior and neurodevelopment at 12-14 months (mean ± SD: 13.3 ± 1.6 months; 46% male; n = 56). We found no relationship between serum BDNF levels at birth and BSID-III neurodevelopmental outcomes (cognitive or language), nor with infant behaviors in the Lab-TAB unpredictable mechanical toy or maternal separation tasks. In the sustained attention task, there was a significant positive relationship between serum BDNF and infant negative affect (B = 0.06, p = 0.018) and, for boys only, between serum BDNF and intensity of facial interest (B = 0.03, p = 0.005). However, only the latter remained after correction for multiple testing. This sex-specific association between cord serum BDNF and a parameter of attention at 12-14 months provides some support for the hypothesis that reduced serum BDNF levels at birth are linked to an increased risk for neurodevelopmental disorders.


Subject(s)
Brain-Derived Neurotrophic Factor , Temperament , Brain-Derived Neurotrophic Factor/blood , Female , Fetal Blood , Humans , Infant , Infant, Newborn , Male , Mothers , Neurodevelopmental Disorders
4.
Hum Mol Genet ; 30(19): 1863-1880, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34100083

ABSTRACT

Abnormally elevated expression of the imprinted PHLDA2 gene has been reported in the placenta of human babies that are growth restricted in utero in several studies. We previously modelled this gene alteration in mice and found that just 2-fold increased expression of Phlda2 resulted in placental endocrine insufficiency. In addition, elevated Phlda2 was found to drive fetal growth restriction (FGR) of transgenic offspring and impaired maternal care by their wildtype mothers. Being born small and being exposed to suboptimal maternal care have both been associated with the increased risk of mental health disorders in human populations. In the current study we probed behavioural consequences of elevated Phlda2 for the offspring. We discovered increased anxiety-like behaviours, deficits in cognition and atypical social behaviours, with the greatest impact on male offspring. Subsequent analysis revealed alterations in the transcriptome of the adult offspring hippocampus, hypothalamus and amygdala, regions consistent with these behavioural observations. The inclusion of a group of fully wildtype controls raised in a normal maternal environment allowed us to attribute behavioural and molecular alterations to the adverse maternal environment induced by placental endocrine insufficiency rather than the specific gene change of elevated Phlda2. Our work demonstrates that a highly common alteration reported in human FGR is associated with negative behavioural outcomes later in life. Importantly, we also establish the experimental paradigm that placental endocrine insufficiency can program atypical behaviour in offspring highlighting the under-appreciated role of placental endocrine insufficiency in driving disorders of later life behaviour.


Subject(s)
Fetal Growth Retardation , Placenta , Animals , Anxiety/genetics , Cognition , Female , Fetal Growth Retardation/genetics , Male , Mice , Placenta/metabolism , Pregnancy , Social Behavior
5.
Front Neurosci ; 14: 313, 2020.
Article in English | MEDLINE | ID: mdl-32317926

ABSTRACT

Preclinical mental health research relies upon animal models, and whilst many encouraging advances are being made, reproducibility and translational relevance may be limited by sub-optimal testing or model choices. Animal behaviors are complex and test batteries should be designed to include their multifaceted nature. However, multiple behavioral testing is often avoided due to cost, availability or statistical rigor. Additionally, despite the disparity in the incidence of mental health problems between the sexes, a move toward reducing animal numbers could be a deterrent to including both male and female animals. The current study introduces a unified scoring system for specific behavioral traits with the aim of maximizing the use of all data generated whilst reducing the incidence of statistical errors. Female and male mice from two common background strains were tested on behavior batteries designed to probe multiple aspects of anxiety-related and social behavioral traits. Results for every outcome measure were normalized to generate scores for each test and combined to give each mouse a single unified score for each behavioral trait. The unified behavioral scores revealed clear differences in the anxiety and stress-related, and sociability traits of mice. Principle component analysis of data demonstrated significant clustering of animals into their experimental groups. In contrast, individual tests returned an ambiguous mixture of non-significant trends and significant effects for various outcome measures. Utilizing a range of behavioral measures and combining all outcome measure data to produce unified scores provides a useful tool for detecting subtle behavioral traits in preclinical models.

SELECTION OF CITATIONS
SEARCH DETAIL
...