Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
PeerJ ; 6: e4256, 2018.
Article in English | MEDLINE | ID: mdl-29379684

ABSTRACT

Platanthera bifolia and P. chlorantha are terrestrial and rewarding orchids with a wide Eurasian distribution. Although genetically closely related, they exhibit significant morphological, phenological and ecological differences that maintain reproductive isolation between the species. However, where both species co-occur, individuals with intermediate phenotypic traits, often considered as hybrids, are frequently observed. Here, we combined neutral genetic markers (AFLPs), morphometrics and floral scent analysis (GC-MS) to investigate two mixed Platanthera populations where morphologically intermediate plants were found. Self-pollination experiments revealed a low level of autogamy and artificial crossings combined with assessments of fruit set and seed viability, showed compatibility between the two species. The results of the genetic analyses showed that morphologically intermediate plants had similar genetic patterns as the P. bifolia group. These results are corroborated also by floral scent analyses, which confirmed a strong similarity in floral scent composition between intermediate morphotypes and P. bifolia. Therefore, this study provided a much more detailed picture of the genetic structure of a sympatric zone between two closely allied species and supports the hypothesis that intermediate morphotypes in sympatry could reflect an adaptive evolution in response to local pollinator-mediated selection.

2.
Sci Rep ; 6: 37182, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27883008

ABSTRACT

Orchid species are critically dependent on mycorrhizal fungi for completion of their life cycle, particularly during the early stages of their development when nutritional resources are scarce. As such, orchid mycorrhizal fungi play an important role in the population dynamics, abundance, and spatial distribution of orchid species. However, less is known about the ecology and distribution of orchid mycorrhizal fungi. In this study, we used 454 amplicon pyrosequencing to investigate ecological and geographic variation in mycorrhizal associations in fourteen species of the orchid genus Dactylorhiza. More specifically, we tested the hypothesis that variation in orchid mycorrhizal communities resulted primarily from differences in habitat conditions where the species were growing. The results showed that all investigated Dactylorhiza species associated with a large number of fungal OTUs, the majority belonging to the Tulasnellaceae, Ceratobasidiaceae and Sebacinales. Mycorrhizal specificity was low, but significant variation in mycorrhizal community composition was observed between species inhabiting different ecological habitats. Although several fungi had a broad geographic distribution, Species Indicator Analysis revealed some fungi that were characteristic for specific habitats. Overall, these results indicate that orchid mycorrhizal fungi may have a broad geographic distribution, but that their occurrence is bounded by specific habitat conditions.


Subject(s)
Basidiomycota/genetics , Mycorrhizae/genetics , Orchidaceae/microbiology , DNA, Fungal/genetics , Ecosystem , Europe , Molecular Typing , Mycological Typing Techniques , Phylogeny , Sequence Analysis, DNA , Species Specificity , Symbiosis
3.
PLoS One ; 11(10): e0164108, 2016.
Article in English | MEDLINE | ID: mdl-27695108

ABSTRACT

While it is generally acknowledged that orchid species rely on mycorrhizal fungi for completion of their life cycle, little is yet known about how mycorrhizal fungal diversity and community composition vary within and between closely related orchid taxa. In this study, we used 454 amplicon pyrosequencing to investigate variation in mycorrhizal communities between pure (allopatric) and mixed (sympatric) populations of two closely related Platanthera species (Platanthera bifolia and P. chlorantha) and putative hybrids. Consistent with previous research, the two species primarily associated primarily with members of the Ceratobasidiaceae and, to a lesser extent, with members of the Sebacinales and Tulasnellaceae. In addition, a large number of ectomycorrhizal fungi belonging to various families were observed. Although a considerable number of mycorrhizal fungi were common to both species, the fungal communities were significantly different between the two species. Individuals with intermediate morphology showed communities similar to P. bifolia, confirming previous results based on the genetic architecture and fragrance composition that putative hybrids essentially belonged to one of the parental species (P. bifolia). Differences in mycorrhizal communities between species were smaller in mixed populations than between pure populations, suggesting that variation in mycorrhizal communities was largely controlled by local environmental conditions. The small differences in mycorrhizal communities in mixed populations suggests that mycorrhizal fungi are most likely not directly involved in maintaining species boundaries between the two Platanthera species. However, seed germination experiments are needed to unambiguously assess the contribution of mycorrhizal divergence to reproductive isolation.


Subject(s)
Biodiversity , Mycorrhizae/classification , Mycorrhizae/genetics , Orchidaceae/microbiology , DNA, Fungal , DNA, Ribosomal Spacer , Ecosystem , Sequence Analysis, DNA , Soil Microbiology
4.
J Insect Sci ; 16(1)2016.
Article in English | MEDLINE | ID: mdl-27694346

ABSTRACT

As part of a research project on the food deception strategy in Orchis militaris (L.), the objective of this study was to identify insect visitors and potential pollinators of this orchid species in Belgium. In 2013, insects were collected over 2 d per site in five localities distributed in Southern Belgium (Wallonia). A total of 104 insects belonging to 49 species were caught. Dipterans were the most abundant visitors (50% of total specimens), followed by Hymenopterans (32%). Rhingia campestris Meigen, Bombylius venosus Mikan, Apis mellifera (L.), and Bombus lapidarius (L.) were the most abundant species. Only five specimens bore one to more than 10 pollinia: four honeybees (A. mellifera) and one bumblebee worker (B. lapidarius). These two species should be considered as potential pollinators in the study area, but probably not confirmed ones.


Subject(s)
Appetitive Behavior , Insecta/physiology , Orchidaceae/physiology , Pollination , Animals , Belgium , Flowers , Insecta/classification
5.
Microbiologyopen ; 2(4): 644-58, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23836678

ABSTRACT

Floral nectar of animal-pollinated plants is commonly infested with microorganisms, yet little is known about the microorganisms inhabiting the floral nectar of orchids. In this study, we investigated microbial communities occurring in the floral nectar of seven Epipactis (Orchidaceae) species. Culturable bacteria and yeasts were isolated and identified by partially sequencing the small subunit (SSU) ribosomal RNA (rRNA) gene and the D1/D2 domains of the large subunit (LSU) rRNA gene, respectively. Using three different culture media, we found that bacteria were common inhabitants of the floral nectar of Epipactis. The most widely distributed bacterial operational taxonomic units (OTUs) in nectar of Epipactis were representatives of the family of Enterobacteriaceae, with an unspecified Enterobacteriaceae bacterium as the most common. In contrast to previous studies investigating microbial communities in floral nectar, very few yeast species (mainly of the genus Cryptococcus) were observed, and most of them occurred in very low densities. Total OTU richness (i.e., the number of bacterial and yeast OTUs per orchid species) varied between 4 and 20. Cluster analysis revealed that microbial communities of allogamous species differed from those of autogamous and facultatively autogamous species. This study extends previous efforts to identify microbial communities in floral nectar and indicates that the floral nectar of the orchids investigated mainly contained bacterial communities with moderate phylogenetic diversity.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Biodiversity , Fungi/classification , Fungi/isolation & purification , Orchidaceae/microbiology , Plant Nectar , Bacteria/genetics , Bacteria/growth & development , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fungi/genetics , Fungi/growth & development , Genes, rRNA , Molecular Sequence Data , Phylogeny , RNA, Bacterial/genetics , RNA, Fungal/genetics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
6.
New Phytol ; 192(2): 518-28, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21668874

ABSTRACT

The specificity of orchids for their fungi can vary substantially, from highly specialist interactions to more generalist interactions, but little is known about the evolutionary history of the mycorrhizal specificity of orchids. Here, we used a network analysis approach to investigate orchid mycorrhizal associations in 16 species of the genus Orchis sampled across 11 different regions in Europe. We first examined in detail the structure of the network of associations and then tested for a phylogenetic signal in mycorrhizal specificity and identified the fungi with which the orchids associated. We found 20 different fungal lineages that associated with species of the genus Orchis, most of them being related to members of the Tulasnellaceae (84.33% of all identified associations) and a smaller proportion being related to members of the Ceratobasidiaceae (9.97%). Species associations formed a nested network that is built on asymmetric links among species. Evolution of mycorrhizal specificity in Orchis closely resembles a Brownian motion process, and the interaction between Orchis and Tulasnellaceae fungi is significantly influenced by the phylogenetic relationships between the Orchis species. Our results provide evidence of the presence of phylogenetic conservatism in mycorrhizal specificity in orchids and demonstrate that evolutionary processes may be an important factor in generating patterns of mycorrhizal associations.


Subject(s)
Mycorrhizae/genetics , Orchidaceae/microbiology , Basidiomycota/genetics , Biological Evolution , Orchidaceae/genetics , Phylogeny , Sequence Analysis, DNA , Species Specificity , Symbiosis
7.
Mol Phylogenet Evol ; 38(3): 767-78, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16439164

ABSTRACT

Sequence data from a portion of the external transcribed spacer (ETS) and from the internal transcribed spacers (ITS1 and ITS2) of 18S-26S nuclear ribosomal DNA were used together with chloroplast DNA PCR-RFLP data to unravel patterns of allotetraploid speciation within the Western European Dactylorhiza polyploid complex. A maximum likelihood tree based on combined ETS and ITS sequences suggests that the Western European Dactylorhiza allotetraploids have evolved by hybridization between four main diploid lineages. Cloned sequences and the topology of the ITS plus ETS tree indicate that the allotetraploid species D. elata, D. brennensis, and D. sphagnicola have originated from the autotetraploid D. maculata together with the diploid D. incarnata, while D. majalis, D. traunsteineri, and D. angustata seem to have evolved by hybridization between the D. fuchsii s.str and D. incarnata lineages. Finally, the diploid D. saccifera lineage seems to have been involved together with the D. incarnata lineage in the formation of the allotetraploid D. praetermissa. The observed congruence between the chloroplast tree and the ITS/ETS tree suggests a directional evolution of the nrDNA after polyploidization in favor of the maternal genome. Considered together with morphological, biogeographical, and ecological evidence, the molecular analysis leads us to recognize four species within the investigated allotetraploid complex, namely D. majalis, D. praetermissa, D. elata, and D. sphagnicola.


Subject(s)
Biological Evolution , DNA, Chloroplast/genetics , DNA, Plant/genetics , DNA, Ribosomal/genetics , Orchidaceae/genetics , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length , Polyploidy , Base Sequence , Sequence Homology, Nucleic Acid , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL