Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Bioact Mater ; 17: 204-220, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35386456

ABSTRACT

The distribution of photo-crosslinkable moieties onto a protein backbone can affect a biomaterial's crosslinking behavior, and therefore also its mechanical and biological properties. A profound insight in this respect is essential for biomaterials exploited in tissue engineering and regenerative medicine. In the present work, photo-crosslinkable moieties have been introduced on the primary amine groups of: (i) a recombinant collagen peptide (RCPhC1) with a known amino acid (AA) sequence, and (ii) bovine skin collagen (COL BS) with an unknown AA sequence. The degree of substitution (DS) was quantified with two conventional techniques: an ortho-phthalic dialdehyde (OPA) assay and 1H NMR spectroscopy. However, neither of both provides information on the exact type and location of the modified AAs. Therefore, for the first time, proteomic analysis was evaluated herein as a tool to identify functionalized AAs as well as the exact position of photo-crosslinkable moieties along the AA sequence, thereby enabling an in-depth, unprecedented characterization of functionalized photo-crosslinkable biopolymers. Moreover, our strategy enabled to visualize the spatial distribution of the modifications within the overall structure of the protein. Proteomics has proven to provide unprecedented insight in the distribution of photo-crosslinkable moieties along the protein backbone, undoubtedly contributing to superior functional biomaterial design to serve regenerative medicine.

2.
Macromol Biosci ; 21(5): e2000401, 2021 05.
Article in English | MEDLINE | ID: mdl-33729714

ABSTRACT

In hybrid bioprinting of cartilage tissue constructs, spheroids are used as cellular building blocks and combined with biomaterials for dispensing. However, biomaterial intrinsic cues can deeply affect cell fate and to date, the influence of hydrogel encapsulation on spheroid viability and phenotype has received limited attention. This study assesses this need and unravels 1) how the phenotype of spheroid-laden constructs can be tuned through adjusting the hydrogel physico-chemical properties and 2) if the spheroid maturation stage prior to encapsulation is a determining factor for the construct phenotype. Articular chondrocyte spheroids with a cartilage specific extracellular matrix (ECM) are generated and different maturation stages, early-, mid-, and late-stage (3, 7, and 14 days, respectively), are harvested and encapsulated in 10, 15, or 20 w/v% methacrylamide-modified gelatin (gelMA) for 14 days. The encapsulation of immature spheroids do not lead to a cartilage-like ECM production but when more mature mid- or late-stage spheroids are combined with a certain concentration of gelMA, a fibrocartilage-like as well as a hyaline cartilage-like phenotype can be induced. As a proof of concept, late-stage spheroids are bioprinted using a 10 w/v% gelMA-Irgacure 2959 solution with the aim to test the processing potential of the spheroid-laden bioink.


Subject(s)
Acrylamides/chemistry , Cartilage, Articular/drug effects , Gelatin/chemistry , Hydrogels/pharmacology , Spheroids, Cellular , Animals , Bioprinting , Cartilage, Articular/cytology , Chondrocytes/cytology , Chondrocytes/metabolism , Extracellular Matrix , Gene Expression Profiling , Hydrogels/chemistry , Hydrogels/metabolism , Swine
3.
Biofabrication ; 13(1): 015016, 2021 02 13.
Article in English | MEDLINE | ID: mdl-33586666

ABSTRACT

'Organ-on-chip' devices which integrate three-dimensional (3D) cell culture techniques with microfluidic approaches have the capacity to overcome the limitations of classical 2D platforms. Although several different strategies have been developed to improve the angiogenesis within hydrogels, one of the main challenges in tissue engineering remains the lack of vascularization in the fabricated 3D models. The present work focuses on the high-definition (HD) bioprinting of microvascular structures directly on-chip using two-photon polymerization (2PP). 2PP is a nonlinear process, where the near-infrared laser irradiation will only lead to the polymerization of a very small volume pixel (voxel), allowing the fabrication of channels in the microvascular range (10-30 µm in diameter). Additionally, 2PP not only enables the fabrication of sub-micrometer resolution scaffolds but also allows the direct embedding of cells within the produced structure. The accuracy of the 2PP printing parameters were optimized in order to achieve high-throughput and HD production of microfluidic vessel-on-chip platforms. The spherical aberrations stemming from the refractive index mismatch and the focusing depth inside the sample were simulated and the effect of the voxel compensation as well as different printing modes were demonstrated. Different layer spacings and their dependency on the applied laser power were compared both in terms of accuracy and required printing time resulting in a 10-fold decrease in structuring time while yielding well-defined channels of small diameters. Finally, the capacity of 2PP to create vascular structures within a microfluidic chip was tested with two different settings, by direct embedding of a co-culture of endothelial- and supporting cells during the printing process and by creating a supporting, cell-containing vascular scaffold barrier where the endothelial cell spheroids can be seeded afterwards. The functionality of the formed vessels was demonstrated with immunostaining of vascular endothelial cadherin (VE-Cadherin) endothelial adhesion molecules in both static and perfused culture.


Subject(s)
Bioprinting , Hydrogels , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
4.
Biofabrication ; 13(1)2020 12 31.
Article in English | MEDLINE | ID: mdl-33176293

ABSTRACT

Photocrosslinkable gelatin hydrogels are excellent bioinks or biomaterial ink components to serve biofabrication applications. Especially the widely investigated gelatin-methacroyl (gel-MA) hydrogels hold an impressive track record. However, over the past decade, increasing attention is being paid to thiol-ene photo-click chemistry to obtain hydrogel networks benefitting from a faster reactivity (i.e. seconds vs minutes) along with superior biocompatibility and processability. In order to exploit this photo-click chemistry, often an ene-functionality (e.g. norbornene) is introduced onto gelatin followed by crosslinking in the presence of a multifunctional thiol (e.g. dithiothreitol). To date, very limited research has been performed on the influence of the applied thiolated crosslinker on the final hydrogel properties. Therefore, the present work assesses the influence of different thiolated crosslinkers on the crosslinking kinetics, mechanical properties and biological performance of the hydrogels upon encapsulation of primary adipose tissue-derived stem cells which indicated a cell viability exceeding 70%. Furthermore, the different formulations were processed using two-photon polymerization which indicated, in addition to differences in processing window and swelling ratio, a previously unreported phenomenon. At high intensities (i.e. ⩾150 mW), the laser results in cleavage of the gelatin backbone even in the absence of distinct photo-cleavable functionalities. This can have potential to introduce channels or softer regions in gels to result in zones characterized by different degradation speeds or the formation of blood vessels. Consequently, the present study can be used to provide guidance towards tailoring the thiol-ene system towards the desired applications.


Subject(s)
Gelatin , Hydrogels , Norbornanes , Printing, Three-Dimensional , Sulfhydryl Compounds , Tissue Engineering
5.
Biomacromolecules ; 21(10): 3997-4007, 2020 10 12.
Article in English | MEDLINE | ID: mdl-32841006

ABSTRACT

Various biopolymers, including gelatin, have already been applied to serve a plethora of tissue engineering purposes. However, substantial concerns have arisen related to the safety and the reproducibility of these materials due to their animal origin and the risk associated with pathogen transmission as well as batch-to-batch variations. Therefore, researchers have been focusing their attention toward recombinant materials that can be produced in a laboratory with full reproducibility and can be designed according to specific needs (e.g., by introducing additional RGD sequences). In the present study, a recombinant protein based on collagen type I (RCPhC1) was functionalized with photo-cross-linkable methacrylamide (RCPhC1-MA), norbornene (RCPhC1-NB), or thiol (RCPhC1-SH) functionalities to enable high-resolution 3D printing via two-photon polymerization (2PP). The results indicated a clear difference in 2PP processing capabilities between the chain-growth-polymerized RCPhC1-MA and the step-growth-polymerized RCPhC1-NB/SH. More specifically, reduced swelling-related deformations resulting in a superior CAD-CAM mimicry were obtained for the RCPhC1-NB/SH hydrogels. In addition, RCPhC1-NB/SH allowed the processing of the material in the presence of adipose tissue-derived stem cells that survived the encapsulation process and also were able to proliferate when embedded in the printed structures. As a consequence, it is the first time that successful HD bioprinting with cell encapsulation is reported for recombinant hydrogel bioinks. Therefore, these results can be a stepping stone toward various tissue engineering applications.


Subject(s)
Bioprinting , Animals , Collagen , Gelatin , Hydrogels , Printing, Three-Dimensional , Reproducibility of Results , Tissue Engineering , Tissue Scaffolds
6.
Article in English | MEDLINE | ID: mdl-32523941

ABSTRACT

To date, the treatment of articular cartilage lesions remains challenging. A promising strategy for the development of new regenerative therapies is hybrid bioprinting, combining the principles of developmental biology, biomaterial science, and 3D bioprinting. In this approach, scaffold-free cartilage microtissues with small diameters are used as building blocks, combined with a photo-crosslinkable hydrogel and subsequently bioprinted. Spheroids of human bone marrow-derived mesenchymal stem cells (hBM-MSC) are created using a high-throughput microwell system and chondrogenic differentiation is induced during 42 days by applying chondrogenic culture medium and low oxygen tension (5%). Stable and homogeneous cartilage spheroids with a mean diameter of 116 ± 2.80 µm, which is compatible with bioprinting, were created after 14 days of culture and a glycosaminoglycans (GAG)- and collagen II-positive extracellular matrix (ECM) was observed. Spheroids were able to assemble at random into a macrotissue, driven by developmental biology tissue fusion processes, and after 72 h of culture, a compact macrotissue was formed. In a directed assembly approach, spheroids were assembled with high spatial control using the bio-ink based extrusion bioprinting approach. Therefore, 14-day spheroids were combined with a photo-crosslinkable methacrylamide-modified gelatin (gelMA) as viscous printing medium to ensure shape fidelity of the printed construct. The photo-initiators Irgacure 2959 and Li-TPO-L were evaluated by assessing their effect on bio-ink properties and the chondrogenic phenotype. The encapsulation in gelMA resulted in further chondrogenic maturation observed by an increased production of GAG and a reduction of collagen I. Moreover, the use of Li-TPO-L lead to constructs with lower stiffness which induced a decrease of collagen I and an increase in GAG and collagen II production. After 3D bioprinting, spheroids remained viable and the cartilage phenotype was maintained. Our findings demonstrate that hBM-MSC spheroids are able to differentiate into cartilage microtissues and display a geometry compatible with 3D bioprinting. Furthermore, for hybrid bioprinting of these spheroids, gelMA is a promising material as it exhibits favorable properties in terms of printability and it supports the viability and chondrogenic phenotype of hBM-MSC microtissues. Moreover, it was shown that a lower hydrogel stiffness enhances further chondrogenic maturation after bioprinting.

7.
J Tissue Eng Regen Med ; 14(6): 840-854, 2020 06.
Article in English | MEDLINE | ID: mdl-32336037

ABSTRACT

For patients with soft tissue defects, repair with autologous in vitro engineered adipose tissue could be a promising alternative to current surgical therapies. A volume-persistent engineered adipose tissue construct under in vivo conditions can only be achieved by early vascularization after transplantation. The combination of 3D bioprinting technology with self-assembling microvascularized units as building blocks can potentially answer the need for a microvascular network. In the present study, co-culture spheroids combining adipose-derived stem cells (ASC) and human umbilical vein endothelial cells (HUVEC) were created with an ideal geometry for bioprinting. When applying the favourable seeding technique and condition, compact viable spheroids were obtained, demonstrating high adipogenic differentiation and capillary-like network formation after 7 and 14 days of culture, as shown by live/dead analysis, immunohistochemistry and RT-qPCR. Moreover, we were able to successfully 3D bioprint the encapsulated spheroids, resulting in compact viable spheroids presenting capillary-like structures, lipid droplets and spheroid outgrowth after 14 days of culture. This is the first study that generates viable high-throughput (pre-)vascularized adipose microtissues as building blocks for bioprinting applications using a novel ASC/HUVEC co-culture spheroid model, which enables both adipogenic differentiation while simultaneously supporting the formation of prevascular-like structures within engineered tissues in vitro.


Subject(s)
Adipose Tissue , Bioprinting , Human Umbilical Vein Endothelial Cells , Microvessels , Printing, Three-Dimensional , Stem Cells , Tissue Engineering , Adipose Tissue/blood supply , Adipose Tissue/cytology , Adipose Tissue/metabolism , Coculture Techniques , Female , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Microvessels/cytology , Microvessels/metabolism , Middle Aged , Stem Cells/cytology , Stem Cells/metabolism
8.
J Mater Sci Mater Med ; 31(4): 36, 2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32206922

ABSTRACT

The increasing number of mastectomies results in a greater demand for breast reconstruction characterized by simplicity and a low complication profile. Reconstructive surgeons are investigating tissue engineering (TE) strategies to overcome the current surgical drawbacks. 3D bioprinting is the rising technique for the fabrication of large tissue constructs which provides a potential solution for unmet clinical needs in breast reconstruction building on decades of experience in autologous fat grafting, adipose-derived mesenchymal stem cell (ASC) biology and TE. A scaffold was bioprinted using encapsulated ASC spheroids in methacrylated gelatin ink (GelMA). Uniform ASC spheroids with an ideal geometry and diameter for bioprinting were formed, using a high-throughput non-adhesive agarose microwell system. ASC spheroids in adipogenic differentiation medium (ADM) were evaluated through live/dead staining, histology (HE, Oil Red O), TEM and RT-qPCR. Viable spheroids were obtained for up to 14 days post-printing and showed multilocular microvacuoles and successful differentiation toward mature adipocytes shown by gene expression analysis. Moreover, spheroids were able to assemble at random in GelMA, creating a macrotissue. Combining the advantage of microtissues to self-assemble and the controlled organization by bioprinting technologies, these ASC spheroids can be useful as building blocks for the engineering of soft tissue implants.


Subject(s)
Adipose Tissue/cytology , Adipose Tissue/physiology , Bioprinting/methods , Gelatin/chemistry , Mesenchymal Stem Cells/physiology , Spheroids, Cellular/physiology , Ink , Tissue Engineering/methods
9.
Macromol Biosci ; 20(4): e1900364, 2020 04.
Article in English | MEDLINE | ID: mdl-32077631

ABSTRACT

Adipose tissue engineering aims to provide solutions to patients who require tissue reconstruction following mastectomies or other soft tissue trauma. Mesenchymal stromal cells (MSCs) robustly differentiate into the adipogenic lineage and are attractive candidates for adipose tissue engineering. This work investigates whether pore size modulates adipogenic differentiation of MSCs toward identifying optimal scaffold pore size and whether pore size modulates spatial infiltration of adipogenically differentiated cells. To assess this, extrusion-based 3D printing is used to fabricate photo-crosslinkable gelatin-based scaffolds with pore sizes in the range of 200-600 µm. The adipogenic differentiation of MSCs seeded onto these scaffolds is evaluated and robust lipid droplet formation is observed across all scaffold groups as early as after day 6 of culture. Expression of adipogenic genes on scaffolds increases significantly over time, compared to TCP controls. Furthermore, it is found that the spatial distribution of cells is dependent on the scaffold pore size, with larger pores leading to a more uniform spatial distribution of adipogenically differentiated cells. Overall, these data provide first insights into the role of scaffold pore size on MSC-based adipogenic differentiation and contribute toward the rational design of biomaterials for adipose tissue engineering in 3D volumetric spaces.


Subject(s)
Adipocytes/drug effects , Biocompatible Materials/pharmacology , Gelatin/chemistry , Mesenchymal Stem Cells/drug effects , Tissue Engineering/methods , Tissue Scaffolds , Adipocytes/cytology , Adipocytes/metabolism , Adipogenesis/drug effects , Adipogenesis/genetics , Adipose Tissue/cytology , Adipose Tissue/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/radiation effects , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Gelatin/radiation effects , Gene Expression , Humans , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Porosity , Primary Cell Culture , Printing, Three-Dimensional , Ultraviolet Rays
10.
J Mater Chem B ; 7(19): 3100-3108, 2019 05 15.
Article in English | MEDLINE | ID: mdl-31441462

ABSTRACT

Gelatin is frequently used in various biomedical applications. However, gelatin is generally extracted from an animal source, which can result in issues with reproducibility as well as pathogen transmittance. Therefore, we have investigated the potential of a recombinant peptide based on collagen I (RCPhC1) for tissue engineering applications and more specifically for adipose tissue regeneration. In the current paper, RCPhC1 was functionalized with photo-crosslinkable methacrylamide moieties to enable subsequent UV-induced crosslinking in the presence of a photo-initiator. The resulting biomaterial (RCPhC1-MA) was characterized by evaluating the crosslinking behaviour, the mechanical properties, the gel fraction, the swelling properties and the biocompatibility. The obtained results were compared with the data obtained for methacrylamide-modified gelatin (Gel-MA). The results indicated that the properties of RCPhC1-MA networks are comparable to those of animal-derived Gel-MA. RCPhC1-MA is thus an attractive synthetic alternative for animal-derived Gel-MA and is envisioned to be applicable for a wide range of tissue engineering purposes.


Subject(s)
Biocompatible Materials/chemistry , Collagen/chemistry , Tissue Engineering/methods , Humans
11.
Int J Biol Macromol ; 140: 929-938, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31422191

ABSTRACT

Current soft tissue repair techniques for women with breast cancer remain associated with several drawbacks including surgical complications and a high resorption rate for lipofilling techniques. Hence, the need to develop improved adipose tissue reconstruction strategies. Additive manufacturing can be a promising tool towards the development of patient-specific scaffolds which are able to support adipose tissue engineering. In the present work, scaffolds composed of both methacrylamide-modified gelatin (Gel-MA) and methacrylated κ-carrageenan (Car-MA), i.e. hydrogel blends, were developed using extrusion-based 3D printing in order to establish a close resemblance to the native extracellular matrix. The hydrogel blends were benchmarked to scaffolds constituting of only Gel-MA. Our results indicate that both types of scaffolds remain stable over time (21 days), are able to absorb large amounts of water and exhibit mechanical properties comparable to those of native breast tissue (2 kPa). Furthermore, a similar cell viability (> 90%) and proliferation rate after 14 days was obtained for adipose tissue-derived stem cells (ASCs) upon seeding onto both types of scaffolds. Additionally, the ASCs were able to differentiate into the adipogenic lineage on the hydrogel blend scaffolds, although their differentiation potential was lower compared to that of ASCs seeded onto the Gel-MA scaffolds.


Subject(s)
Adipose Tissue , Carrageenan/chemistry , Gelatin/chemistry , Hydrogels/chemistry , Printing, Three-Dimensional , Regeneration , Adipogenesis , Cell Differentiation , Cell Proliferation , Cells, Cultured , Chemical Phenomena , Magnetic Resonance Spectroscopy , Mechanical Phenomena , Tissue Engineering
12.
Acta Biomater ; 97: 46-73, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31344513

ABSTRACT

Over the recent decades gelatin has proven to be very suitable as an extracellular matrix mimic for biofabrication and tissue engineering applications. However, gelatin is prone to dissolution at typical cell culture conditions and is therefore often chemically modified to introduce (photo-)crosslinkable functionalities. These modifications allow to tune the material properties of gelatin, making it suitable for a wide range of biofabrication techniques both as a bioink and as a biomaterial ink (component). The present review provides a non-exhaustive overview of the different reported gelatin modification strategies to yield crosslinkable materials that can be used to form hydrogels suitable for biofabrication applications. The different crosslinking chemistries are discussed and classified according to their mechanism including chain-growth and step-growth polymerization. The step-growth polymerization mechanisms are further classified based on the specific chemistry including different (photo-)click chemistries and reversible systems. The benefits and drawbacks of each chemistry are also briefly discussed. Furthermore, focus is placed on different biofabrication strategies using either inkjet, deposition or light-based additive manufacturing techniques, and the applications of the obtained 3D constructs. STATEMENT OF SIGNIFICANCE: Gelatin and more specifically gelatin-methacryloyl has emerged to become one of the gold standard materials as an extracellular matrix mimic in the field of biofabrication. However, also other modification strategies have been elaborated to take advantage of a plethora of crosslinking chemistries. Therefore, a review paper focusing on the different modification strategies and processing of gelatin is presented. Particular attention is paid to the underlying chemistry along with the benefits and drawbacks of each type of crosslinking chemistry. The different strategies were classified based on their basic crosslinking mechanism including chain- or step-growth polymerization. Within the step-growth classification, a further distinction is made between click chemistries as well as other strategies. The influence of these modifications on the physical gelation and processing conditions including mechanical properties is presented. Additionally, substantial attention is put to the applied photoinitiators and the different biofabrication technologies including inkjet, deposition or light-based technologies.


Subject(s)
Bioprinting , Click Chemistry , Gelatin , Hydrogels , Polymerization , Gelatin/chemistry , Gelatin/pharmacology , Hydrogels/chemical synthesis , Hydrogels/chemistry , Hydrogels/pharmacology
13.
Acta Biomater ; 94: 340-350, 2019 08.
Article in English | MEDLINE | ID: mdl-31136829

ABSTRACT

There exists a clear clinical need for adipose tissue reconstruction strategies to repair soft tissue defects which outperform the currently available approaches. In this respect, additive manufacturing has shown to be a promising alternative for the development of larger constructs able to support adipose tissue engineering. In the present work, a thiol-ene photo-click crosslinkable gelatin hydrogel was developed which allowed extrusion-based additive manufacturing into porous scaffolds. To this end, norbornene-functionalized gelatin (Gel-NB) was combined with thiolated gelatin (Gel-SH). The application of a macromolecular gelatin-based thiolated crosslinker holds several advantages over conventional crosslinkers including cell-interactivity, less chance at phase separation between scaffold material and crosslinker and the formation of a more homogeneous network. Throughout the paper, these photo-click scaffolds were benchmarked to the conventional methacrylamide-modified gelatin (Gel-MA). The results indicated that stable scaffolds could be realized which were further characterized physico-chemically by performing swelling, mechanical and in vitro biodegradability assays. Furthermore, the seeded adipose tissue-derived stem cells (ASCs) remained viable (>90%) up to 14 days and were able to proliferate. In addition, the cells could be differentiated into the adipogenic lineage on the photo-click crosslinked scaffolds, thereby performing better than the cells supported by the frequently reported Gel-MA scaffolds. As a result, the developed photo-click crosslinked scaffolds can be considered a promising candidate towards adipose tissue engineering and a valuable alternative for the omnipresent Gel-MA. STATEMENT OF SIGNIFICANCE: The field of adipose tissue engineering has emerged as a promising strategy to repair soft tissue defects. Herein, Gel-NB/Gel-SH gelatin-based hydrogel scaffolds were produced using extrusion-based additive manufacturing. Using a cell-interactive, thiolated gelatin crosslinker, a homogeneous network was formed and the risk of phase separation between norbornene-modified gelatin and macromolecular crosslinkers was reduced. UV-induced crosslinking of these materials is based on step growth polymerization which requires less free radicals to enable polymerization. Our results demonstrated the potential of the developed scaffolds, due to their favourable physico-chemical characteristics as well as their adipogenic differentiation potential when benchmarked to Gel-MA scaffolds. Hence, the hydrogels could be of great interest towards future development of adipose tissue constructs and tissue engineering in general.


Subject(s)
Adipose Tissue/metabolism , Gelatin/chemistry , Photochemical Processes , Stem Cells/metabolism , Tissue Engineering , Tissue Scaffolds/chemistry , Acrylamides/chemistry , Adipose Tissue/cytology , Humans , Stem Cells/cytology
14.
ACS Biomater Sci Eng ; 5(10): 5348-5358, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-33464076

ABSTRACT

Cell encapsulation in confining 3D hydrogels typically prevents encapsulated cells from spreading and establishing cell-cell contacts. Interactions with neighboring cells or with the extracellular matrix (ECM) influence the paracrine activity of mesenchymal stromal cells (MSCs), but how these interactions are regulated by structural properties of biomaterial scaffolds remains insufficiently explored. Here, we describe the use of extrusion-based 3D printing to fabricate acellular, gelatin-based scaffolds with programmed strut spacings of 400 (small), 500 (medium), and 600 µm (large). These scaffolds showed similar effective Young's moduli in the range of 2-5 kPa, and varied based on average pore size which ranged from ∼200 µm (small pore: SP) through ∼302 µm (medium pore: MP) to ∼382 µm (large pore: LP). When seeded with MSCs, pore size guided cell distribution on the scaffolds, with smaller pores preventing cell infiltration, medium ones causing cells to aggregate in between struts, and large ones causing cells to flow through after attachment on the struts. These changes in cell distribution regulated cell-cell and cell-matrix interactions at the gene level, as assessed by pathway focused PCR arrays. Medium pore size scaffolds stimulated the highest paracrine secretion of a panel of angiogenic cytokines. This enhancement of paracrine activity substantially improved endothelial cell migration in a chemotaxis assay, increased single cell migration kinetics such as velocity, and stimulated the formation of robust tubular structures. Together, these findings not only provide new insights on cellular interactions in scaffold environments but also demonstrate how 3D biomaterial design can instruct and enhance the regenerative paracrine activities of MSCs.

15.
Biofabrication ; 8(3): 032002, 2016 09 23.
Article in English | MEDLINE | ID: mdl-27658612

ABSTRACT

Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application. During tissue formation these properties are influenced by the amount of cells present in the construct, their proliferation, migration and interaction with the material. A calibrated computational framework is able to predict the tissue development and maturation and to optimize the bioprinting input parameters such as the starting material, the initial cell loading and the construct geometry. In this contribution relevant bioink properties are reviewed and discussed on the example of most popular bioprinting approaches. The effect of cells on hydrogel processing and vice versa is highlighted. Furthermore, numerical approaches were reviewed and implemented for depicting the cellular mechanics within the hydrogel as well as for prediction of mechanical properties to achieve the desired hydrogel construct considering cell density, distribution and material-cell interaction.


Subject(s)
Bioprinting/instrumentation , Printing, Three-Dimensional , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Line , Cell Survival/drug effects , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Tissue Engineering , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...