Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 198: 105710, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225068

ABSTRACT

Aedes aegypti, the primary vector responsible for transmitting dengue fever in southern Taiwan, has developed a relatively high resistance to synthetic pyrethroids. It has evolved four amino acid substitutions in the voltage-gated sodium channel (VGSC), namely S996P, V1023G, F1565C, and D1794Y. To unveil the distribution and correlation of VGSC mutations and pyrethroid resistance among different field populations, Ae. aegypti collected from various districts in Kaohsiung and Tainan Cities underwent tests for resistance development against different pyrethroids and frequency of S996P, V1023G, F1565C, and D1794Y substitutions. The adult knockdown assay revealed a relatively high knockdown resistance in the Ae. aegypti populations from Kaohsiung and Tainan against permethrin, cypermethrin, and fenvalerate (averaging >50-fold). Conversely, less resistance was observed against α-cypermethrin, deltamethrin, λ-cyhalothrin, cyfluthrin, and etofenprox (averaging <35-fold). Using Polymerase Chain Reaction/restriction fragment length polymorphism analysis, four mutant haplotypes were identified in these field populations. Notably, the SIAVFD and SIBVFD wild haplotypes were absent. Analysis utilizing IBM SPSS Statistics 20.0 and Spearman's rank correlation coefficient indicated that Haplotype C (PIAGFD), especially P allele, frequency displayed a significant positive correlation with five Type II pyrethroid resistance, while 1023G and 1023G/G exhibited a significant association with permethrin and fevalerate resistance. Conversely, Haplotype E (SIBVCD) negatively correlated with pyrethroid resistance, particularly fenvalerate resistance (-0.776). Haplotype C and E were the most prevalent and widely distributed among the investigated field populations. This prevalence of haplotype C is likely tied to the extensive and excessive use of Type II pyrethroids for dengue control over the past three decades. Given the significant positive correlation, the best-fit lines and R2 values were established to facilitate the swift prediction of knockdown resistance levels to various pyrethroids based on VGSC mutation frequency. This predictive approach aims to guide insecticide usage and the management of pyrethroid resistance in the field populations of Ae. aegypti in Taiwan.


Subject(s)
Aedes , Insecticides , Nitriles , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Permethrin , Aedes/genetics , Aedes/metabolism , Mutation Rate , Insecticide Resistance/genetics , Pyrethrins/pharmacology , Pyrethrins/metabolism , Insecticides/pharmacology , Insecticides/metabolism , Mutation , Voltage-Gated Sodium Channels/genetics , Voltage-Gated Sodium Channels/metabolism , Mosquito Vectors/genetics
2.
J Med Entomol ; 60(5): 1117-1123, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37499051

ABSTRACT

Culicoides-borne viruses are an important arbovirus group causing bovine diseases. During 2012-2019, 2,525 pools consisting of 108,937 specimens of vectors were subjected to PCR detection of bovine arbovirus belonging to Orthobunyavirus, Orbivirus, and Ephemerovirus. Twelve virus RNAs, of which 6, that is, Shuni virus, Shamonda virus, and Sathuperi virus in Orthobunyavirus and Sathuvachari virus and epizootic hemorrhagic disease virus serotypes 4 and 7 in Orbivirus were detected for the first time in the area. Potential vector species were evaluated by the minimum infection rate, and the population abundance of Culicoides oxystoma, Culex tritaeniorhynchus, and Anopheles sinensis indicated that they were the main potential vector species in dairy farms in Taiwan.


Subject(s)
Arbovirus Infections , Arboviruses , Ceratopogonidae , Orbivirus , Animals , Cattle , Arbovirus Infections/epidemiology , Arbovirus Infections/veterinary , Farms , Mosquito Vectors
3.
Viruses ; 15(2)2023 02 05.
Article in English | MEDLINE | ID: mdl-36851653

ABSTRACT

Since the first discovery of severe fever with thrombocytopenia syndrome virus (SFTSV) in China in 2009, SFTSV has rapidly spread through other Asian countries, including Japan, Korea, Vietnam and Pakistan, in chronological order. Taiwan reported its first discovery of SFTSV in sheep and humans in 2020. However, the prevalence of SFTSV in domestic and wildlife animals and the geographic distribution of the virus within the island remain unknown. A total of 1324 animal samples, including 803 domestic ruminants, 521 wildlife animals and 47 tick pools, were collected from March 2021 to December 2022 from 12 counties and one terrestrial island. The viral RNA was detected by a one-step real-time reverse transcription polymerase chain reaction (RT-PCR). Overall, 29.9% (240/803) of ruminants showed positive SFTSV RNA. Sheep had the highest viral RNA prevalence of 60% (30/50), followed by beef cattle at 28.4% (44/155), goats at 28.3% (47/166), and dairy cows at 27.5% (119/432). The bovine as a total of dairy cow and beef cattle was 27.8% (163/587). The viral RNA prevalence in ticks (predominantly Rhipicephalus microplus) was similar to those of ruminants at 27.7% (13/47), but wild animals exhibited a much lower prevalence at 1.3% (7/521). Geographically the distribution of positivity was quite even, being 33%, 29.1%, 27.5% and 37.5% for northern, central, southern and eastern Taiwan, respectively. Statistically, the positive rate of beef cattle in the central region (55.6%) and dairy cattle in the eastern region (40.6%) were significantly higher than the other regions; and the prevalence in Autumn (September-November) was significantly higher than in the other seasons (p < 0.001). The nationwide study herein revealed for the first time the wide distribution and high prevalence of SFTSV in both domestic animals and ticks in Taiwan. Considering the high mortality rate in humans, surveillance of other animal species, particularly those in close contact with humans, and instigation of protective measures for farmers, veterinarians, and especially older populations visiting or living near farms or rural areas should be prioritized.


Subject(s)
Animals, Wild , Severe Fever with Thrombocytopenia Syndrome , Female , Humans , Animals , Cattle , Sheep , Taiwan/epidemiology , Ruminants , Goats , Pakistan , RNA, Viral/genetics
4.
Med Vet Entomol ; 37(2): 371-380, 2023 06.
Article in English | MEDLINE | ID: mdl-36734022

ABSTRACT

The bloodsucking fly, Stomoxys calcitrans (Diptera: Muscidae), is a cosmopolitan pest that transmits potential pathogens mechanically. We conduct phylogeographic analyses of S. calcitrans to resolve its global population genetic structure for establishing baseline of molecular studies. Results from mitochondrial gene suggested that the major divergence of S. calcitrans predominantly occurred 0.32-0.47 million years ago (Mya) and the subsequent diversifications took place during 0.13-0.27 Mya. The Ethiopian region was deduced as the most likely origin of S. calcitrans and the Nearctic lineages were considered to have originated from Oriental or Palaearctic regions. Our results further revealed that each biogeographic region of S. calcitrans likely maintains its genetic specialty, and yet, those non-monophyletic relationships were possibly caused by ancestral retention, dispersal with mammals, long-distance migration, and the international livestock industries. Moreover, the three highly diverged Ethiopian lineages may be putative cryptic species that require clarification of their veterinary importance. Unravelling the genetic structure of stable fly and preventing gene flow among biogeographic regions through anthropogenic activities are thus pivotal in livestock industry administration, particularly genetic exchange among differentiated lineages that might lead to the consequence of ecological trait alterations.


Subject(s)
Muscidae , Animals , Muscidae/genetics , Phylogeography , Genetic Structures , Mammals
5.
Acta Trop ; 237: 106726, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36273537

ABSTRACT

Japanese encephalitis (JE) is an important mosquito-borne infectious disease in rural areas of Asia that is caused by Japanese encephalitis virus (JEV). Culex tritaeniorhynchus is the major vector of JEV, nevertheless there are other mosquitoes that may be able to transmit JEV. This study confirms that the midgut, head tissue, salivary glands, and reproductive tissue of Aedes albopictus, Armigeres subalbatus, and Culex quinquefasciatus are all able to be infected with JEV after a virus-containing blood meal was ingested by female mosquitoes. Even though the susceptibility to JEV of the different tissues varies, the virus-positive rate increased with the number of days after JEV infection. Moreover, once JEV escapes the midgut barrier, the oral transmission rates of JEV were 16%, 2%, and 21% for Ae. albopictus, Ar. subalbatus, and Cx. quinquefasciatus at 14 days after infection at 30 °C, respectively. There is no supporting evidence to suggest vertical transmission of JEV by the tested mosquitoes. Collectively, raising the temperature enhances JEV replication in the salivary gland of the three mosquito species, suggesting that global warming will enhance mosquito vector competence and that this is likely to lead to an increase in the probability of JEV transmission.


Subject(s)
Aedes , Culex , Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Female , Temperature , Taiwan , Mosquito Vectors
6.
Vet Med Sci ; 8(5): 2215-2222, 2022 09.
Article in English | MEDLINE | ID: mdl-35971895

ABSTRACT

BACKGROUND: Akabane virus (AKAV) is a teratogenic and neuropathogenic arbovirus that infects livestock and wild animals. AKAVs are endemic arboviruses from dairy farms in Taiwan in 1989, and the first sequence was detected in cattle with nonsuppurative encephalitis in 1992. OBJECTIVES: This study aims to understand the epidemiological relationships of the akabane viruses between Taiwan and nearby places. METHODS: In this study, 17 specimens were identified or isolated from vector insects, and ruminant fetuses collected from 1992 to 2015 were sequenced and analysed. RESULTS: Sequence analyses revealed all Taiwanese AKAVs belonged to genogroup Ia but diverged into two clusters in the phylogenetic trees, implying that at least two invasive events of AKAV may have occurred in Taiwan. CONCLUSIONS: The two clusters of AKAVs could still be identified in Taiwan in 2015, and a reassortment event was observed, indicating that the two clusters of AKAVs are already endemic in Taiwan.


Subject(s)
Arboviruses , Cattle Diseases , Orthobunyavirus , Animals , Arboviruses/genetics , Cattle , Cattle Diseases/epidemiology , Molecular Epidemiology , Orthobunyavirus/genetics , Phylogeny , Taiwan/epidemiology
7.
J Econ Entomol ; 114(4): 1764-1770, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34104957

ABSTRACT

Overexpression of a cytochrome P450 gene, CYP4G19, is known to associate with pyrethroid resistance in the German cockroach, Blattella germanica (L.) (Blattodea: Ectobiidae). In this study, we investigated the CYP4G19 expression level in 20 field-collected strains of B. germanica in Taiwan. We also examined the level of adult male susceptibility to imidacloprid, fipronil, indoxacarb, and hydramethylnon using single-diagnostic dose bioassays and their susceptibility to corresponding gel baits to determine how the CYP4G19 expression level influences the cockroach gel bait performance. Results showed that the CYP4G19 gene expression level among the field-collected German cockroach was 1.8- to 9.7-fold higher than that of the susceptible strain. It was negatively correlated (P < 0.05) with the % mortality after treatments with imidacloprid and fipronil diagnostic doses. However, no correlation was found between CYP4G19 gene expression with the % mortality after treatment with indoxacarb and hydramethylnon diagnostic doses. Indoxacarb and hydramethylnon baits showed high efficacy against the field strains with a mean mortality of 97.58 ± 1.35% and 90.95 ±1.65%, respectively. This study provided the first evidence of cross-resistance to imidacloprid and fipronil in pyrethroid-resistant German cockroaches due to overexpression of CYP4G19.


Subject(s)
Blattellidae , Cockroaches , Insecticides , Pyrethrins , Animals , Blattellidae/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Male , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...