Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Genet B Neuropsychiatr Genet ; 127B(1): 117-24, 2004 May 15.
Article in English | MEDLINE | ID: mdl-15108193

ABSTRACT

Dyslexia is a common and genetically complex trait that manifests primarily as a reading disability independent of general intelligence and educational opportunity. Strong evidence for a dyslexia susceptibility locus on chromosome 1p34-p36 (near marker D1S199) was recently reported, and an earlier study found suggestive evidence for linkage to the same region. We tested for the presence of a dyslexia gene in this region in a sample of 100 Canadian families using both qualitative and quantitative definitions of the phenotype. Using a qualitative definition of dyslexia (affected, unaffected, or uncertain), the largest multipoint Genehunter Maximum LOD-Score (MLS) in 100 core nuclear families was 3.65 at D1S507, distal to D1S199. Quantitative trait locus (QTL) linkage analysis was performed for four measures of dyslexia (phonological awareness, phonological coding, spelling, and rapid automatized naming speed) employing the variance components approach implemented in Genehunter. Using a model with QTL additive and dominance variance and polygenic additive variance, the multipoint LOD scores maximized proximal to D1S199 (between D1S552 and D1S1622), with peaks of 4.01 for spelling and 1.65 for phonological coding (corresponding LOD scores under 1 degree of freedom were 3.30 and 1.13, respectively). In conclusion, our study confirms and strengthens recent findings of a dyslexia susceptibility gene on chromosome 1p34-p36 (now designated DYX8).


Subject(s)
Chromosomes, Human, Pair 1/genetics , Dyslexia/genetics , Genetic Predisposition to Disease/genetics , Canada , Child , Chromosome Mapping , Dyslexia/pathology , Family Health , Genotype , Humans , Lod Score , Microsatellite Repeats , Phenotype
2.
J Am Soc Nephrol ; 12(3): 507-514, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11181798

ABSTRACT

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH), a renal phosphate (Pi) wasting disease first described in an extended Bedouin kindred, is characterized by hypophosphatemia, elevated serum 1,25-dihydroxyvitamin D levels, hypercalciuria, rickets, and osteomalacia. Correction of all abnormalities, except for renal Pi wasting, can be achieved by oral Pi supplementation. These findings and the demonstration that mice that are homozygous for the disrupted Na/Pi cotransporter gene Npt2 exhibit many of the biochemical features of HHRH suggested that mutations in the human orthologue NPT2 might be responsible for HHRH. The NPT2 gene in affected individuals from the Bedouin kindred and four small families was screened for mutations to test this hypothesis. No putative disease-causing mutation was found. Two single nucleotide polymorphisms (SNP), a silent substitution in exon 7 and a nucleotide substitution in intron 4, were identified, and neither consistently segregated with HHRH in the Bedouin kindred. Linkage analysis indicated that the two NPT2 intragenic SNP as well as five microsatellite markers in the NPT2 gene region were not linked to HHRH in the Bedouin kindred. Therefore, this is evidence to exclude NPT2 as a candidate gene for HHRH in the families that were studied.


Subject(s)
Carrier Proteins/genetics , Hypophosphatemia, Familial/genetics , Symporters , Base Sequence , Calcium/urine , DNA Mutational Analysis , DNA Primers/genetics , Female , Genetic Linkage , Humans , Hypophosphatemia, Familial/metabolism , Male , Mutation , Pedigree , Phenotype , Phosphates/metabolism , Sodium/metabolism , Sodium-Phosphate Cotransporter Proteins , Sodium-Phosphate Cotransporter Proteins, Type I , Sodium-Phosphate Cotransporter Proteins, Type III
SELECTION OF CITATIONS
SEARCH DETAIL
...