Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomedicines ; 11(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37189788

ABSTRACT

Microneurotrophins, small-molecule mimetics of endogenous neurotrophins, have demonstrated significant therapeutic effects on various animal models of neurological diseases. Nevertheless, their effects on central nervous system injuries remain unknown. Herein, we evaluate the effects of microneurotrophin BNN27, an NGF analog, in the mouse dorsal column crush spinal cord injury (SCI) model. BNN27 was delivered systemically either by itself or combined with neural stem cell (NSC)-seeded collagen-based scaffold grafts, demonstrated recently to improve locomotion performance in the same SCI model. Data validate the ability of NSC-seeded grafts to enhance locomotion recovery, neuronal cell integration with surrounding tissues, axonal elongation and angiogenesis. Our findings also show that systemic administration of BNN27 significantly reduced astrogliosis and increased neuron density in mice SCI lesion sites at 12 weeks post injury. Furthermore, when BNN27 administration was combined with NSC-seeded PCS grafts, BNN27 increased the density of survived implanted NSC-derived cells, possibly addressing a major challenge of NSC-based SCI treatments. In conclusion, this study provides evidence that small-molecule mimetics of endogenous neurotrophins can contribute to effective combinatorial treatments for SCI, by simultaneously regulating key events of SCI and supporting grafted cell therapies in the lesion site.

2.
NPJ Regen Med ; 6(1): 39, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34294726

ABSTRACT

To understand why mammals generally do not regenerate injured organs, we considered the exceptional case of spontaneous skin regeneration in the early lamb fetus. Whereas during the early fetal stage skin wounds heal by regeneration, in the late fetal stage, and after birth, skin wounds close instead by scar formation. We review independent evidence that this switch in wound healing response coincides with the onset of wound contraction, which is also enabled during late fetal gestation. The crucial role of wound contraction in determining the wound healing outcome in adults has been demonstrated in three mammalian models of severe injury (excised guinea pig skin, transected rat sciatic nerve, excised rabbit conjunctival stroma) where grafting the injury with DRT, a contraction-blocking scaffold of highly-specific structure, altered significantly the wound healing outcome. While spontaneous healing resulted in scar formation in these animal models, DRT grafting significantly reduced the extent of wound contraction, prevented scar synthesis, and resulted in partial regeneration. These findings, as well as independent data from species that heal spontaneously via regeneration, point to a striking hypothesis: The process of regeneration lies dormant in mammals until appropriately activated by injury. In spontaneous wound healing of the late fetus and in adult mammals, wound contraction impedes such endogenous regeneration mechanisms. However, engineered treatments, such as DRT, that block wound contraction can cancel its effects and favor wound healing by regeneration instead of scar formation.

3.
Biomed Opt Express ; 12(2): 1136-1153, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33680563

ABSTRACT

In this study, we use non-linear imaging microscopy to characterize the structural properties of porous collagen-GAG scaffolds (CGS) seeded with human umbilical vein endothelial cells (HUVECs), as well as human mesenchymal stem cells (hMSCs), a co-culture previously reported to form vessel-like structures inside CGS. The evolution of the resulting tissue construct was monitored over 10 days via simultaneous two- and three-photon excited fluorescence microscopy. Time-lapsed 2- and 3-photon excited fluorescence imaging was utilized to monitor the temporal evolution of the vascular-like structures up to 100 µm inside the scaffold up to 10 days post-seeding. 3D polarization-dependent second harmonic generation (PSHG) was utilized to monitor collagen-based scaffold remodeling and determine collagen fibril orientation up to 200 µm inside the scaffold. We demonstrate that polarization-dependent second harmonic generation can provide a novel way to quantify the reorganization of the collagen architecture in CGS simultaneously with key biomechanical interactions between seeded cells and CGS that regulate the formation of vessel-like structures inside 3D tissue constructs. A comparison between samples at different days in vitro revealed that gradually, the scaffolds developed an orthogonal net-like architecture, previously found in real skin.

4.
NPJ Regen Med ; 5: 12, 2020.
Article in English | MEDLINE | ID: mdl-32566251

ABSTRACT

Neural stem cell (NSC) grafts have demonstrated significant effects in animal models of spinal cord injury (SCI), yet their clinical translation remains challenging. Significant evidence suggests that the supporting matrix of NSC grafts has a crucial role in regulating NSC effects. Here we demonstrate that grafts based on porous collagen-based scaffolds (PCSs), similar to biomaterials utilized clinically in induced regeneration, can deliver and protect embryonic NSCs at SCI sites, leading to significant improvement in locomotion recovery in an experimental mouse SCI model, so that 12 weeks post-injury locomotion performance of implanted animals does not statistically differ from that of uninjured control animals. NSC-seeded PCS grafts can modulate key processes required to induce regeneration in SCI lesions including enhancing NSC neuronal differentiation and functional integration in vivo, enabling robust axonal elongation, and reducing astrogliosis. Our findings suggest that the efficacy and translational potential of emerging NSC-based SCI therapies could be enhanced by delivering NSC via scaffolds derived from well-characterized clinically proven PCS.

5.
Curr Opin Biomed Eng ; 6: 1-7, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29392187

ABSTRACT

This article is a review of current research on the mechanism of regeneration of skin and peripheral nerves based on use of collagen scaffolds, particularly the dermis regeneration template (DRT), which is widely used clinically. DRT modifies the normal wound healing process, converting it from wound closure by contraction and scar formation to closure by regeneration. DRT achieves this modification by blocking wound contraction, which spontaneously leads to cancellation of scar formation, a process secondary to contraction. Contraction blocking by DRT is the result of a dramatic phenotype change in contractile cells (myofibroblasts, MFB) which follows specific binding of integrins α1ß1 and α2ß1 onto hexapeptide ligands, probably GFOGER and GLOGER, that are naturally present on the surface of collagen fibers in DRT. The methodology of organ regeneration based on use of DRT has been recently extended from traumatized skin to diseased skin. Successful extension of the method to other organs in which wounds heal by contraction is highly likely though not yet attempted. This regenerative paradigm is much more advanced both in basic mechanistic understanding and clinical use than methods based on tissue culture or stem cells. It is also largely free of risk and has shown decisively lower morbidity and lower cost than organ transplantation.

6.
Wound Repair Regen ; 25(2): 177-191, 2017 04.
Article in English | MEDLINE | ID: mdl-28370669

ABSTRACT

We review the mounting evidence that regeneration is induced in wounds in skin and peripheral nerves by a simple modification of the wound healing process. Here, the process of induced regeneration is compared to the other two well-known processes by which wounds close, i.e., contraction and scar formation. Direct evidence supports the hypothesis that the mechanical force of contraction (planar in skin wounds, circumferential in nerve wounds) is the driver guiding the orientation of assemblies of myofibroblasts (MFB) and collagen fibers during scar formation in untreated wounds. We conclude that scar formation depends critically on wound contraction and is, therefore, a healing process secondary to contraction. Wound contraction and regeneration did not coincide during healing in a number of experimental models of spontaneous (untreated) regeneration described in the literature. Furthermore, in other studies in which an efficient contraction-blocker, a collagen scaffold named dermis regeneration template (DRT), and variants of it, were grafted on skin wounds or peripheral nerve wounds, regeneration was systematically observed in the absence of contraction. We conclude that contraction and regeneration are mutually antagonistic processes. A dramatic change in the phenotype of MFB was observed when the contraction-blocking scaffold DRT was used to treat wounds in skin and peripheral nerves. The phenotype change was directly observed as drastic reduction in MFB density, dispersion of MFB assemblies and loss of alignment of the long MFB axes. These observations were explained by the evidence of a surface-biological interaction of MFB with the scaffold, specifically involving binding of MFB integrins α1 ß1 and α2 ß1 to ligands GFOGER and GLOGER naturally present on the surface of the collagen scaffold. In summary, we show that regeneration of wounded skin and peripheral nerves in the adult mammal can be induced simply by appropriate control of wound contraction, rather than of scar formation.


Subject(s)
Cicatrix/pathology , Collagen/metabolism , Nerve Regeneration/physiology , Peripheral Nerves/physiopathology , Skin/injuries , Skin/innervation , Wound Healing/physiology , Wounds and Injuries/pathology , Animals , Disease Models, Animal , Guided Tissue Regeneration/methods , Humans , Surface Properties , Tissue Scaffolds
7.
Ann Biomed Eng ; 44(3): 803-15, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26369635

ABSTRACT

Cells inside a 3D matrix (such as tissue extracellular matrix or biomaterials) sense their insoluble environment through specific binding interactions between their adhesion receptors and ligands present on the matrix surface. Despite the critical role of the insoluble matrix in cell regulation, there exist no widely-applicable methods for quantifying the chemical stimuli provided by a matrix to cells. Here, we describe a general-purpose technique for quantifying in situ the density of ligands for specific cell adhesion receptors of interest on the surface of a 3D matrix. This paper improves significantly the accuracy of the procedure introduced in a previous publication by detailed marker characterization, optimized staining, and improved data interpretation. The optimized methodology is utilized to quantify the ligands of integrins α 1 ß 1, α 2 ß 1 on two kinds of matched porous collagen scaffolds, which are shown to possess significantly different ligand density, and significantly different ability to induce peripheral nerve regeneration in vivo. Data support the hypothesis that cell adhesion regulates contractile cell phenotypes, recently shown to be inversely related to organ regeneration. The technique provides a standardized way to quantify the surface chemistry of 3D matrices, and a means for introducing matrix effects in quantitative biological models.


Subject(s)
Biocompatible Materials/chemistry , Collagen/chemistry , Integrin alpha1beta1/chemistry , Integrin alpha2beta1/chemistry , Tissue Scaffolds/chemistry , Animals , Female , Porosity , Rats , Rats, Inbred Lew
8.
Opt Express ; 20(24): 26219-35, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23187477

ABSTRACT

Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude.


Subject(s)
Cytoplasm/ultrastructure , Fluorescence , Imaging, Three-Dimensional , Microscopy, Fluorescence/methods , Photons , Humans
9.
Biomaterials ; 33(19): 4783-91, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22483241

ABSTRACT

The adult mammal responds to severe injury of most organs spontaneously by wound contraction and scar formation, rather than by regeneration. In severe skin wounds, the ability of porous collagen scaffolds to induce regeneration was found to correlate strongly with a reduction in wound contraction rate. Here, we present quantitative evidence of a similar positive relationship between the extent of disruption of tissue contraction and quality of peripheral nerve regeneration in transected rat peripheral nerves. Our observations suggest that porous collagen scaffolds enhance regeneration both in injured adult skin and peripheral nerves by disrupting the formation of a contractile cell capsule at the edges of the wound. Preliminary observations made with other injured organs support the hypothesis that capsules or clusters of contractile cells impose a universal mechanical barrier during wound healing which, if disrupted appropriately, enhances the quality of induced regeneration in a wider range of organs.


Subject(s)
Collagen/chemistry , Nerve Regeneration/physiology , Peripheral Nerves/cytology , Skin/cytology , Tissue Scaffolds/chemistry , Wound Healing/physiology , Animals , Immunohistochemistry , Male , Mice , Myofibroblasts/cytology , Peripheral Nerves/metabolism , Rats , Skin/metabolism
10.
ACS Chem Biol ; 6(9): 893-9, 2011 Sep 16.
Article in English | MEDLINE | ID: mdl-21671613

ABSTRACT

Phenazines, a group of fluorescent small molecules produced by the bacterium Pseudomonas aeruginosa, play a role in maintaining cellular redox homeostasis. Phenazines have been challenging to study in vivo due to their redox activity, presence both intra- and extracellularly, and their diverse chemical properties. Here, we describe a noninvasive in vivo optical technique to monitor phenazine concentrations within bacterial cells using time-lapsed spectral multiphoton fluorescence microscopy. This technique enables simultaneous monitoring of multiple weakly fluorescent molecules (phenazines, siderophores, NAD(P)H) expressed by bacteria in culture. This work provides the first in vivo measurements of reduced phenazine concentration as well as the first description of the temporal dynamics of the phenazine-NAD(P)H redox system in Pseudomonas aeruginosa, illuminating an unanticipated role for 1-hydroxyphenazine. Similar approaches could be used to study the abundance and redox dynamics of a wide range of small molecules within bacteria, both as single cells and in communities.


Subject(s)
Microscopy, Fluorescence, Multiphoton/methods , Phenazines/analysis , Phenazines/metabolism , Pseudomonas aeruginosa/metabolism , Molecular Structure , NADP/metabolism , Oxidation-Reduction , Pseudomonas aeruginosa/cytology
11.
J R Soc Interface ; 7 Suppl 5: S649-61, 2010 Oct 06.
Article in English | MEDLINE | ID: mdl-20671067

ABSTRACT

The three-dimensional matrix that surrounds cells is an important insoluble regulator of cell phenotypes. Examples of such insoluble surfaces are the extracellular matrix (ECM), ECM analogues and synthetic polymeric biomaterials. Cell-matrix interactions are mediated by cell adhesion receptors that bind to chemical entities (adhesion ligands) on the surface of the matrix. There are currently no established methods to obtain quantitative estimates of the density of adhesion ligands recognized by specific cell adhesion receptors. This article presents a new optical-based methodology for measuring ligands of adhesion receptors on three-dimensional matrices. The study also provides preliminary quantitative results for the density of adhesion ligands of integrins alpha(1)beta(1) and alpha(2)beta(1) on the surface of collagen-based scaffolds, similar to biomaterials that are used clinically to induce regeneration in injured skin and peripheral nerves. Preliminary estimates of the surface density of the ligands of these two major collagen-binding receptors are 5775 +/- 2064 ligands microm(-2) for ligands of alpha(1)beta(1) and 17 084 +/- 5353 ligands microm(-2) for ligands of alpha(2)beta(1). The proposed methodology can be used to quantify the surface chemistry of insoluble surfaces that possess biological activity, such as native tissue ECM and biomaterials, and therefore can be used in cell biology, biomaterials science and regenerative medical studies for quantitative description of a matrix and its effects on cells.


Subject(s)
Cell Adhesion , Cell-Matrix Junctions/ultrastructure , Binding, Competitive , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Biomarkers/analysis , Cell Movement , Cell-Matrix Junctions/chemistry , Cell-Matrix Junctions/metabolism , Cells, Cultured , Collagen/chemistry , Collagen/metabolism , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/ultrastructure , Humans , Integrins/metabolism , Ligands , Microscopy, Fluorescence/methods , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Surface Properties , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...