Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 23(13): 17191-204, 2015 Jun 29.
Article in English | MEDLINE | ID: mdl-26191728

ABSTRACT

The role of thin-film metal transducers in ultrafast laser-generated longitudinal acoustic phonons in Si (100) monocrystal substrates is investigated. For this purpose degenerate femtosecond pump-probe transient reflectivity measurements are performed probing the Brillouin scattering of laser photons from phonons. The influence of the metallic electron-phonon coupling factor, acoustical impedance and film thickness is examined. An optical transfer matrix method for thin films is applied to extract the net acoustic strain relative strength for the various transducer cases, taking into account the experimental probing efficiency. In addition, a theoretical thermo-mechanical approach based on the combination of a revised two-temperature model and elasticity theory is applied and supports the experimental findings. The results show highly efficient generation of acoustic phonons in Si when Ti transducers are used. This demonstrates the crucial role of the transducer's high electron-phonon coupling constant and high compressive yield strength, as well as strong acoustical impedance matching with the semiconductor substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...