Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Acta Neuropathol ; 147(1): 32, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319380

ABSTRACT

Synapse loss correlates with cognitive decline in Alzheimer's disease, and soluble oligomeric amyloid beta (Aß) is implicated in synaptic dysfunction and loss. An important knowledge gap is the lack of understanding of how Aß leads to synapse degeneration. In particular, there has been difficulty in determining whether there is a synaptic receptor that binds Aß and mediates toxicity. While many candidates have been observed in model systems, their relevance to human AD brain remains unknown. This is in part due to methodological limitations preventing visualization of Aß binding at individual synapses. To overcome this limitation, we combined two high resolution microscopy techniques: array tomography and Förster resonance energy transfer (FRET) to image over 1 million individual synaptic terminals in temporal cortex from AD (n = 11) and control cases (n = 9). Within presynapses and post-synaptic densities, oligomeric Aß generates a FRET signal with transmembrane protein 97. Further, Aß generates a FRET signal with cellular prion protein, and post-synaptic density 95 within post synapses. Transmembrane protein 97 is also present in a higher proportion of post synapses in Alzheimer's brain compared to controls. We inhibited Aß/transmembrane protein 97 interaction in a mouse model of amyloidopathy by treating with the allosteric modulator CT1812. CT1812 drug concentration correlated negatively with synaptic FRET signal between transmembrane protein 97 and Aß. In human-induced pluripotent stem cell derived neurons, transmembrane protein 97 is present in synapses and colocalizes with Aß when neurons are challenged with human Alzheimer's brain homogenate. Transcriptional changes are induced by Aß including changes in genes involved in neurodegeneration and neuroinflammation. CT1812 treatment of these neurons caused changes in gene sets involved in synaptic function. These data support a role for transmembrane protein 97 in the synaptic binding of Aß in human Alzheimer's disease brain where it may mediate synaptotoxicity.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Membrane Proteins , Animals , Humans , Mice , Amyloid beta-Peptides , Brain , Synapses , Membrane Proteins/metabolism
2.
Elife ; 122023 12 12.
Article in English | MEDLINE | ID: mdl-38085657

ABSTRACT

Microglial endolysosomal (dys)function is strongly implicated in neurodegenerative disease. Transcriptomic studies show that a microglial state characterised by a set of genes involved in endolysosomal function is induced in both mouse Alzheimer's disease (AD) models and human AD brain, and that the emergence of this state is emphasised in females. Cst7 (encoding cystatin F) is among the most highly upregulated genes in these microglia. However, despite such striking and robust upregulation, the function of Cst7 in neurodegenerative disease is not understood. Here, we crossed Cst7-/- mice with the AppNL-G-F mouse to test the role of Cst7 in a model of amyloid-driven AD. Surprisingly, we found that Cst7 plays a sexually dimorphic role regulating microglia in this model. In females, Cst7-/-AppNL-G-F microglia had greater endolysosomal gene expression, lysosomal burden, and amyloid beta (Aß) burden in vivo and were more phagocytic in vitro. However, in males, Cst7-/-AppNL-G-F microglia were less inflammatory and had a reduction in lysosomal burden but had no change in Aß burden. Overall, our study reveals functional roles for one of the most commonly upregulated genes in microglia across disease models, and the sex-specific profiles of Cst7-/--altered microglial disease phenotypes. More broadly, the findings raise important implications for AD including crucial questions on sexual dimorphism in neurodegenerative disease and the interplay between endolysosomal and inflammatory pathways in AD pathology.


Subject(s)
Alzheimer Disease , Cystatins , Neurodegenerative Diseases , Animals , Female , Humans , Male , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Cystatins/metabolism , Disease Models, Animal , Mice, Transgenic , Microglia/metabolism , Neurodegenerative Diseases/pathology
3.
Brain Neurosci Adv ; 7: 23982128231191046, 2023.
Article in English | MEDLINE | ID: mdl-37600228

ABSTRACT

A key hallmark of Alzheimer's disease (AD) is the accumulation of hyperphosphorylated tau in neurofibrillary tangles. This occurs alongside neuroinflammation and neurodegeneration. Pathological tau propagates through the AD brain in a defined manner, which correlates with neuron and synapse loss and cognitive decline. One proposed mechanism of tau spread is through synaptically connected brain structures. Apolipoprotein E4 (APOE4) genotype is the strongest genetic risk factor for late-onset AD and is associated with increased tau burden. Whether the apolipoprotein E (APOE) genotype influences neurodegeneration via tau spread is currently unknown. Here, we demonstrate that virally expressed human tau (with the P301L mutation) injected into mouse entorhinal cortex at 5-6 months or 15-16 months of age spreads trans-synaptically to the hippocampus by 14 weeks post-injection. Injections of tau in mice expressing human APOE2, APOE3 or APOE4, as well as APOE knock-outs, showed that tau can spread trans-synaptically in all genotypes and that APOE genotype and age do not affect the spread of tau. These data suggest that APOE genotype is not directly linked to synaptic spread of tau in our model, but other mechanisms involving non-cell autonomous manners of tau spread are still possible.

4.
Cell Rep Med ; 4(9): 101175, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37652017

ABSTRACT

Synapse loss correlates with cognitive decline in Alzheimer's disease (AD). Data from mouse models suggests microglia are important for synapse degeneration, but direct human evidence for any glial involvement in synapse removal in human AD remains to be established. Here we observe astrocytes and microglia from human brains contain greater amounts of synaptic protein in AD compared with non-disease controls, and that proximity to amyloid-ß plaques and the APOE4 risk gene exacerbate this effect. In culture, mouse and human astrocytes and primary mouse and human microglia phagocytose AD patient-derived synapses more than synapses from controls. Inhibiting interactions of MFG-E8 rescues the elevated engulfment of AD synapses by astrocytes and microglia without affecting control synapse uptake. Thus, AD promotes increased synapse ingestion by human glial cells at least in part via an MFG-E8 opsonophagocytic mechanism with potential for targeted therapeutic manipulation.


Subject(s)
Alzheimer Disease , Microglia , Animals , Humans , Mice , Astrocytes , Eating , Synapses
5.
Front Cell Neurosci ; 17: 1179796, 2023.
Article in English | MEDLINE | ID: mdl-37346371

ABSTRACT

While motor and cortical neurons are affected in C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), it remains largely unknown if and how non-neuronal cells induce or exacerbate neuronal damage. We differentiated C9orf72 ALS/FTD patient-derived induced pluripotent stem cells into microglia (iPSC-MG) and examined their intrinsic phenotypes. Similar to iPSC motor neurons, C9orf72 ALS/FTD iPSC-MG mono-cultures form G4C2 repeat RNA foci, exhibit reduced C9orf72 protein levels, and generate dipeptide repeat proteins. Healthy control and C9orf72 ALS/FTD iPSC-MG equally express microglial specific genes and perform microglial functions, including inflammatory cytokine release and phagocytosis of extracellular cargos, such as synthetic amyloid beta peptides and healthy human brain synaptoneurosomes. RNA sequencing analysis revealed select transcriptional changes of genes associated with neuroinflammation or neurodegeneration in diseased microglia yet no significant differentially expressed microglial-enriched genes. Moderate molecular and functional differences were observed in C9orf72 iPSC-MG mono-cultures despite the presence of C9orf72 pathological features suggesting that a diseased microenvironment may be required to induce phenotypic changes in microglial cells and the associated neuronal dysfunction seen in C9orf72 ALS/FTD neurodegeneration.

6.
Neuron ; 111(14): 2170-2183.e6, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37192625

ABSTRACT

In Alzheimer's disease, fibrillar tau pathology accumulates and spreads through the brain and synapses are lost. Evidence from mouse models indicates that tau spreads trans-synaptically from pre- to postsynapses and that oligomeric tau is synaptotoxic, but data on synaptic tau in human brain are scarce. Here we used sub-diffraction-limit microscopy to study synaptic tau accumulation in postmortem temporal and occipital cortices of human Alzheimer's and control donors. Oligomeric tau is present in pre- and postsynaptic terminals, even in areas without abundant fibrillar tau deposition. Furthermore, there is a higher proportion of oligomeric tau compared with phosphorylated or misfolded tau found at synaptic terminals. These data suggest that accumulation of oligomeric tau in synapses is an early event in pathogenesis and that tau pathology may progress through the brain via trans-synaptic spread in human disease. Thus, specifically reducing oligomeric tau at synapses may be a promising therapeutic strategy for Alzheimer's disease.


Subject(s)
Alzheimer Disease , tau Proteins , Animals , Humans , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Presynaptic Terminals/metabolism , Synapses/metabolism , tau Proteins/metabolism
7.
Nat Rev Neurol ; 19(1): 19-38, 2023 01.
Article in English | MEDLINE | ID: mdl-36513730

ABSTRACT

Alzheimer disease (AD) is characterized by progressive cognitive decline in older individuals accompanied by the presence of two pathological protein aggregates - amyloid-ß and phosphorylated tau - in the brain. The disease results in brain atrophy caused by neuronal loss and synapse degeneration. Synaptic loss strongly correlates with cognitive decline in both humans and animal models of AD. Indeed, evidence suggests that soluble forms of amyloid-ß and tau can cause synaptotoxicity and spread through neural circuits. These pathological changes are accompanied by an altered phenotype in the glial cells of the brain - one hypothesis is that glia excessively ingest synapses and modulate the trans-synaptic spread of pathology. To date, effective therapies for the treatment or prevention of AD are lacking, but understanding how synaptic degeneration occurs will be essential for the development of new interventions. Here, we highlight the mechanisms through which synapses degenerate in the AD brain, and discuss key questions that still need to be answered. We also cover the ways in which our understanding of the mechanisms of synaptic degeneration is leading to new therapeutic approaches for AD.


Subject(s)
Alzheimer Disease , Animals , Humans , Aged , Alzheimer Disease/pathology , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Synapses/pathology , Brain/metabolism
8.
Alzheimers Dement ; 19(6): 2560-2574, 2023 06.
Article in English | MEDLINE | ID: mdl-36547260

ABSTRACT

INTRODUCTION: It remains unclear why age increases risk of Alzheimer's disease and why some people experience age-related cognitive decline in the absence of dementia. Here we test the hypothesis that resilience to molecular changes in synapses contribute to healthy cognitive ageing. METHODS: We examined post-mortem brain tissue from people in mid-life (n = 15), healthy ageing with either maintained cognition (n = 9) or lifetime cognitive decline (n = 8), and Alzheimer's disease (n = 13). Synapses were examined with high resolution imaging, proteomics, and RNA sequencing. Stem cell-derived neurons were challenged with Alzheimer's brain homogenate. RESULTS: Synaptic pathology increased, and expression of genes involved in synaptic signaling decreased between mid-life, healthy ageing and Alzheimer's. In contrast, brain tissue and neurons from people with maintained cognition during ageing exhibited decreases in synaptic signaling genes compared to people with cognitive decline. DISCUSSION: Efficient synaptic networks without pathological protein accumulation may contribute to maintained cognition during ageing.


Subject(s)
Alzheimer Disease , Cognitive Aging , Healthy Aging , Synapses , Cognition , Synapses/metabolism , Synapses/pathology , Brain/metabolism , Brain/pathology , Sequence Analysis, RNA , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neurons/metabolism , Neurons/pathology , Synaptic Transmission , Postmortem Changes , Healthy Aging/metabolism , Healthy Aging/pathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Male , Female , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Gliosis/pathology
9.
Eur J Neurosci ; 56(9): 5637-5649, 2022 11.
Article in English | MEDLINE | ID: mdl-35362642

ABSTRACT

Inflammation and ageing-related DNA methylation patterns in the blood have been linked to a variety of morbidities, including cognitive decline and neurodegenerative disease. However, it is unclear how these blood-based patterns relate to patterns within the brain and how each associates with central cellular profiles. In this study, we profiled DNA methylation in both the blood and in five post mortem brain regions (BA17, BA20/21, BA24, BA46 and hippocampus) in 14 individuals from the Lothian Birth Cohort 1936. Microglial burdens were additionally quantified in the same brain regions. DNA methylation signatures of five epigenetic ageing biomarkers ('epigenetic clocks'), and two inflammatory biomarkers (methylation proxies for C-reactive protein and interleukin-6) were compared across tissues and regions. Divergent associations between the inflammation and ageing signatures in the blood and brain were identified, depending on region assessed. Four out of the five assessed epigenetic age acceleration measures were found to be highest in the hippocampus (ß range = 0.83-1.14, p ≤ 0.02). The inflammation-related DNA methylation signatures showed no clear variation across brain regions. Reactive microglial burdens were found to be highest in the hippocampus (ß = 1.32, p = 5 × 10-4 ); however, the only association identified between the blood- and brain-based methylation signatures and microglia was a significant positive association with acceleration of one epigenetic clock (termed DNAm PhenoAge) averaged over all five brain regions (ß = 0.40, p = 0.002). This work highlights a potential vulnerability of the hippocampus to epigenetic ageing and provides preliminary evidence of a relationship between DNA methylation signatures in the brain and differences in microglial burdens.


Subject(s)
DNA Methylation , Neurodegenerative Diseases , Humans , Microglia , Epigenesis, Genetic , Brain , Inflammation/genetics , Biomarkers
10.
Eur J Neurol ; 29(5): 1311-1323, 2022 05.
Article in English | MEDLINE | ID: mdl-34331352

ABSTRACT

BACKGROUND AND PURPOSE: Synapse degeneration in Alzheimer's disease (AD) correlates strongly with cognitive decline. There is well-established excitatory synapse loss in AD with known contributions of pathological amyloid beta (Aß) to excitatory synapse dysfunction and loss. Despite clear changes in circuit excitability in AD and model systems, relatively little is known about pathology in inhibitory synapses. METHODS: Here human postmortem brain samples (n = 5 control, 10 AD cases) from temporal and occipital cortices were examined to investigate whether inhibitory synapses and neurons are lost in AD and whether Aß may contribute to inhibitory synapse degeneration. Inhibitory neurons were counted in all six cortical layers using stereology software, and array tomography was used to examine synapse density and the accumulation of Aß in synaptic terminals. RESULTS: Differing inhibitory neuron densities were observed in the different cortical layers. The highest inhibitory neuron density was observed in layer 4 in both brain regions and the visual cortex had a higher inhibitory neuron density than the temporal cortex. There was significantly lower inhibitory neuron density in AD than in control cases in all six cortical layers. High-resolution array tomography imaging revealed plaque-associated loss of inhibitory synapses and accumulation of Aß in a small subset of inhibitory presynaptic terminals with the most accumulation near amyloid plaques. CONCLUSIONS: Inhibitory neuron and synapse loss in AD may contribute to disrupted excitatory/inhibitory balance and cognitive decline. Future work is warranted to determine whether targeting inhibitory synapse loss could be a useful therapeutic strategy.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/pathology , Humans , Plaque, Amyloid/pathology , Presynaptic Terminals/pathology , Synapses/pathology
11.
Cell Rep ; 29(11): 3592-3604.e5, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31825838

ABSTRACT

A key knowledge gap blocking development of effective therapeutics for Alzheimer's disease (AD) is the lack of understanding of how amyloid beta (Aß) peptide and pathological forms of the tau protein cooperate in causing disease phenotypes. Within a mouse tau-deficient background, we probed the molecular, cellular, and behavioral disruption triggered by the influence of wild-type human tau on human Aß-induced pathology. We find that Aß and tau work cooperatively to cause a hyperactivity behavioral phenotype and to cause downregulation of transcription of genes involved in synaptic function. In both our mouse model and human postmortem tissue, we observe accumulation of pathological tau in synapses, supporting the potential importance of synaptic tau. Importantly, tau reduction in the mice initiated after behavioral deficits emerge corrects behavioral deficits, reduces synaptic tau levels, and substantially reverses transcriptional perturbations, suggesting that lowering synaptic tau levels may be beneficial in AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Animals , Female , Humans , Male , Mice , Microglia/metabolism , Spatial Behavior , Synapses/metabolism , Transcriptome
12.
Acta Neuropathol Commun ; 7(1): 214, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31862015

ABSTRACT

Degeneration of synapses in Alzheimer's disease (AD) strongly correlates with cognitive decline, and synaptic pathology contributes to disease pathophysiology. We recently observed that the strongest genetic risk factor for sporadic AD, apolipoprotein E epsilon 4 (APOE4), is associated with exacerbated synapse loss and synaptic accumulation of oligomeric amyloid beta in human AD brain. To begin to understand the molecular cascades involved in synapse loss in AD and how this is mediated by APOE, and to generate a resource of knowledge of changes in the synaptic proteome in AD, we conducted a proteomic screen and systematic in silico analysis of synaptoneurosome preparations from temporal and occipital cortices of human AD and control subjects with known APOE gene status. We examined brain tissue from 33 subjects (7-10 per group). We pooled tissue from all subjects in each group for unbiased proteomic analyses followed by validation with individual case samples. Our analysis identified over 5500 proteins in human synaptoneurosomes and highlighted disease, brain region, and APOE-associated changes in multiple molecular pathways including a decreased abundance in AD of proteins important for synaptic and mitochondrial function and an increased abundance of proteins involved in neuroimmune interactions and intracellular signaling.


Subject(s)
Alzheimer Disease/metabolism , Apolipoproteins E/metabolism , Brain/metabolism , Neurons/metabolism , Proteome , Synapses/metabolism , Adult , Aged, 80 and over , Alzheimer Disease/pathology , Apolipoprotein E4/metabolism , Brain/pathology , Female , Humans , Male , Middle Aged , Mitochondria/metabolism , Neurons/pathology , Proteomics , Synapses/pathology
13.
Front Cell Neurosci ; 13: 63, 2019.
Article in English | MEDLINE | ID: mdl-30863284

ABSTRACT

Synapse loss is an early feature shared by many neurodegenerative diseases, and it represents the major correlate of cognitive impairment. Recent studies reveal that microglia and astrocytes play a major role in synapse elimination, contributing to network dysfunction associated with neurodegeneration. Excitatory and inhibitory activity can be affected by glia-mediated synapse loss, resulting in imbalanced synaptic transmission and subsequent synaptic dysfunction. Here, we review the recent literature on the contribution of glia to excitatory/inhibitory imbalance, in the context of the most common neurodegenerative disorders. A better understanding of the mechanisms underlying pathological synapse loss will be instrumental to design targeted therapeutic interventions, taking in account the emerging roles of microglia and astrocytes in synapse remodeling.

14.
eNeuro ; 5(2)2018.
Article in English | MEDLINE | ID: mdl-29780880

ABSTRACT

Network hyperexcitability is a feature of Alzheimer' disease (AD) as well as numerous transgenic mouse models of AD. While hyperexcitability in AD patients and AD animal models share certain features, the mechanistic overlap remains to be established. We aimed to identify features of network hyperexcitability in AD models that can be related to epileptiform activity signatures in AD patients. We studied network hyperexcitability in mice expressing amyloid precursor protein (APP) with mutations that cause familial AD, and compared a transgenic model that overexpresses human APP (hAPP) (J20), to a knock-in model expressing APP at physiological levels (APPNL/F). We recorded continuous long-term electrocorticogram (ECoG) activity from mice, and studied modulation by circadian cycle, behavioral, and brain state. We report that while J20s exhibit frequent interictal spikes (IISs), APPNL/F mice do not. In J20 mice, IISs were most prevalent during daylight hours and the circadian modulation was associated with sleep. Further analysis of brain state revealed that IIS in J20s are associated with features of rapid eye movement (REM) sleep. We found no evidence of cholinergic changes that may contribute to IIS-circadian coupling in J20s. In contrast to J20s, intracranial recordings capturing IIS in AD patients demonstrated frequent IIS in non-REM (NREM) sleep. The salient differences in sleep-stage coupling of IIS in APP overexpressing mice and AD patients suggests that different mechanisms may underlie network hyperexcitability in mice and humans. We posit that sleep-stage coupling of IIS should be an important consideration in identifying mouse AD models that most closely recapitulate network hyperexcitability in human AD.


Subject(s)
Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Circadian Rhythm/physiology , Cortical Excitability/physiology , Disease Models, Animal , Epilepsy/physiopathology , Nerve Net/physiopathology , Sleep Stages/physiology , Amyloid beta-Peptides/genetics , Animals , Electrocorticography , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
15.
Acta Neuropathol ; 135(2): 213-226, 2018 02.
Article in English | MEDLINE | ID: mdl-29273900

ABSTRACT

In addition to motor neurone degeneration, up to 50% of amyotrophic lateral sclerosis (ALS) patients present with cognitive decline. Understanding the neurobiological changes underlying these cognitive deficits is critical, as cognitively impaired patients exhibit a shorter survival time from symptom onset. Given the pathogenic role of synapse loss in other neurodegenerative diseases in which cognitive decline is apparent, such as Alzheimer's disease, we aimed to assess synaptic integrity in the ALS brain. Here, we have applied a unique combination of high-resolution imaging of post-mortem tissue with neuropathology, genetic screening and cognitive profiling of ALS cases. Analyses of more than 1 million synapses using two complimentary high-resolution techniques (electron microscopy and array tomography) revealed a loss of synapses from the prefrontal cortex of ALS patients. Importantly, synapse loss was significantly greater in cognitively impaired cases and was not due to cortical atrophy, nor associated with dementia-associated neuropathology. Interestingly, we found a trend between pTDP-43 pathology and synapse loss in the frontal cortex and discovered pTDP-43 puncta at a subset of synapses in the ALS brains. From these data, we postulate that synapse loss in the prefrontal cortex represents an underlying neurobiological substrate of cognitive decline in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/psychology , Cognitive Dysfunction/pathology , Prefrontal Cortex/pathology , Synapses/pathology , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Atrophy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Cohort Studies , DNA-Binding Proteins/metabolism , Female , Humans , Male , Middle Aged , Phosphorylation , Prefrontal Cortex/metabolism , Prefrontal Cortex/ultrastructure , Synapses/metabolism , Synapses/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...