Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
New Phytol ; 241(1): 283-297, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37897048

ABSTRACT

Cold stress is one of the major environmental factors that limit growth and yield of plants. However, it is still not fully understood how plants account for daily temperature fluctuations, nor how these temperature changes are integrated with other regulatory systems such as the circadian clock. We demonstrate that REVEILLE2 undergoes alternative splicing after chilling that increases accumulation of a transcript isoform encoding a MYB-like transcription factor. We explore the biological function of REVEILLE2 in Arabidopsis thaliana using a combination of molecular genetics, transcriptomics, and physiology. Disruption of REVEILLE2 alternative splicing alters regulatory gene expression, impairs circadian timing, and improves photosynthetic capacity. Changes in nuclear gene expression are particularly apparent in the initial hours following chilling, with chloroplast gene expression subsequently upregulated. The response of REVEILLE2 to chilling extends our understanding of plants immediate response to cooling. We propose that the circadian component REVEILLE2 restricts plants responses to nocturnal reductions in temperature, thereby enabling appropriate responses to daily environmental changes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Circadian Clocks/genetics , Circadian Rhythm/genetics , Gene Expression Regulation, Plant , Temperature
2.
Methods Mol Biol ; 2398: 173-188, 2022.
Article in English | MEDLINE | ID: mdl-34674176

ABSTRACT

RNA-sequencing (RNA-seq) is currently the method of choice for analysis of differential gene expression. To fully exploit the wealth of data generated from genome-wide transcriptomic approaches, the initial design of the experiment is of paramount importance. Biological rhythms in nature are pervasive and are driven by endogenous gene networks collectively known as circadian clocks. Measuring circadian gene expression requires time-course experiments which take into account time-of-day factors influencing variability in expression levels. We describe here an approach for characterizing diurnal changes in expression and alternative splicing for plants undergoing cooling. The method uses inexpensive everyday laboratory equipment and utilizes an RNA-seq application (3D RNA-seq) that can handle complex experimental designs and requires little or no prior bioinformatics expertise.


Subject(s)
Alternative Splicing , Gene Expression Profiling , RNA-Seq , Research Design , Sequence Analysis, RNA , Transcriptome
3.
RNA Biol ; 18(11): 1574-1587, 2021 11.
Article in English | MEDLINE | ID: mdl-33345702

ABSTRACT

RNA-sequencing (RNA-seq) analysis of gene expression and alternative splicing should be routine and robust but is often a bottleneck for biologists because of different and complex analysis programs and reliance on specialized bioinformatics skills. We have developed the '3D RNA-seq' App, an R shiny App and web-based pipeline for the comprehensive analysis of RNA-seq data from any organism. It represents an easy-to-use, flexible and powerful tool for analysis of both gene and transcript-level gene expression to identify differential gene/transcript expression, differential alternative splicing and differential transcript usage (3D) as well as isoform switching from RNA-seq data. 3D RNA-seq integrates state-of-the-art differential expression analysis tools and adopts best practice for RNA-seq analysis. The program is designed to be run by biologists with minimal bioinformatics experience (or by bioinformaticians) allowing lab scientists to analyse their RNA-seq data. It achieves this by operating through a user-friendly graphical interface which automates the data flow through the programs in the pipeline. The comprehensive analysis performed by 3D RNA-seq is extremely rapid and accurate, can handle complex experimental designs, allows user setting of statistical parameters, visualizes the results through graphics and tables, and generates publication quality figures such as heat-maps, expression profiles and GO enrichment plots. The utility of 3D RNA-seq is illustrated by analysis of data from a time-series of cold-treated Arabidopsis plants and from dexamethasone-treated male and female mouse cortex and hypothalamus data identifying dexamethasone-induced sex- and brain region-specific differential gene expression and alternative splicing.


Subject(s)
Alternative Splicing , Arabidopsis/metabolism , Cerebellar Cortex/metabolism , Gene Expression Regulation/drug effects , Hypothalamus/metabolism , RNA-Seq/methods , RNA/genetics , Animals , Arabidopsis/drug effects , Cerebellar Cortex/drug effects , Cold Temperature , Computational Biology/methods , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Hypothalamus/drug effects , Mice , RNA/metabolism , Software
4.
Front Plant Sci ; 10: 235, 2019.
Article in English | MEDLINE | ID: mdl-30891054

ABSTRACT

Plants re-program their gene expression when responding to changing environmental conditions. Besides differential gene expression, extensive alternative splicing (AS) of pre-mRNAs and changes in expression of long non-coding RNAs (lncRNAs) are associated with stress responses. RNA-sequencing of a diel time-series of the initial response of Arabidopsis thaliana rosettes to low temperature showed massive and rapid waves of both transcriptional and AS activity in protein-coding genes. We exploited the high diversity of transcript isoforms in AtRTD2 to examine regulation and post-transcriptional regulation of lncRNA gene expression in response to cold stress. We identified 135 lncRNA genes with cold-dependent differential expression (DE) and/or differential alternative splicing (DAS) of lncRNAs including natural antisense RNAs, sORF lncRNAs, and precursors of microRNAs (miRNAs) and trans-acting small-interfering RNAs (tasiRNAs). The high resolution (HR) of the time-series allowed the dynamics of changes in transcription and AS to be determined and identified early and adaptive transcriptional and AS changes in the cold response. Some lncRNA genes were regulated only at the level of AS and using plants grown at different temperatures and a HR time-course of the first 3 h of temperature reduction, we demonstrated that the AS of some lncRNAs is highly sensitive to small temperature changes suggesting tight regulation of expression. In particular, a splicing event in TAS1a which removed an intron that contained the miR173 processing and phased siRNAs generation sites was differentially alternatively spliced in response to cold. The cold-induced reduction of the spliced form of TAS1a and of the tasiRNAs suggests that splicing may enhance production of the siRNAs. Our results identify candidate lncRNAs that may contribute to the regulation of expression that determines the physiological processes essential for acclimation and freezing tolerance.

5.
Plant Cell ; 30(7): 1424-1444, 2018 07.
Article in English | MEDLINE | ID: mdl-29764987

ABSTRACT

Plants have adapted to tolerate and survive constantly changing environmental conditions by reprogramming gene expression The dynamics of the contribution of alternative splicing (AS) to stress responses are unknown. RNA-sequencing of a time-series of Arabidopsis thaliana plants exposed to cold determines the timing of significant AS changes. This shows a massive and rapid AS response with coincident waves of transcriptional and AS activity occurring in the first few hours of temperature reduction and further AS throughout the cold. In particular, hundreds of genes showed changes in expression due to rapidly occurring AS in response to cold ("early AS" genes); these included numerous novel cold-responsive transcription factors and splicing factors/RNA binding proteins regulated only by AS. The speed and sensitivity to small temperature changes of AS of some of these genes suggest that fine-tuning expression via AS pathways contributes to the thermo-plasticity of expression. Four early AS splicing regulatory genes have been shown previously to be required for freezing tolerance and acclimation; we provide evidence of a fifth gene, U2B"-LIKE Such factors likely drive cascades of AS of downstream genes that, alongside transcription, modulate transcriptome reprogramming that together govern the physiological and survival responses of plants to low temperature.


Subject(s)
Alternative Splicing/genetics , Arabidopsis/genetics , Transcriptome/genetics , Cold Temperature , Gene Expression Regulation, Plant/genetics
6.
Plant Cell Environ ; 41(7): 1539-1550, 2018 07.
Article in English | MEDLINE | ID: mdl-29532482

ABSTRACT

One of the ways in which plants can respond to temperature is via alternative splicing (AS). Previous work showed that temperature changes affected the splicing of several circadian clock gene transcripts. Here, we investigated the role of RNA-binding splicing factors (SFs) in temperature-sensitive AS of the clock gene LATE ELONGATED HYPOCOTYL (LHY). We characterized, in wild type plants, temperature-associated isoform switching and expression patterns for SF transcripts from a high-resolution temperature and time series RNA-seq experiment. In addition, we employed quantitative RT-PCR of SF mutant plants to explore the role of the SFs in cooling-associated AS of LHY. We show that the splicing and expression of several SFs responds sufficiently, rapidly, and sensitively to temperature changes to contribute to the splicing of the 5'UTR of LHY. Moreover, the choice of splice site in LHY was altered in some SF mutants. The splicing of the 5'UTR region of LHY has characteristics of a molecular thermostat, where the ratio of transcript isoforms is sensitive to temperature changes as modest as 2 °C and is scalable over a wide dynamic range of temperature. Our work provides novel insight into SF-mediated coupling of the perception of temperature to post-transcriptional regulation of the clock.


Subject(s)
Alternative Splicing , Arabidopsis/genetics , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Alternative Splicing/genetics , Alternative Splicing/physiology , Arabidopsis/physiology , Circadian Rhythm/genetics , DNA-Binding Proteins/physiology , Gene Expression Regulation, Plant , RNA Isoforms/genetics , RNA Isoforms/physiology , Real-Time Polymerase Chain Reaction , Temperature , Transcription Factors/physiology
7.
BMC Syst Biol ; 11(1): 62, 2017 Jun 19.
Article in English | MEDLINE | ID: mdl-28629365

ABSTRACT

BACKGROUND: Co-expression has been widely used to identify novel regulatory relationships using high throughput measurements, such as microarray and RNA-seq data. Evaluation studies on co-expression network analysis methods mostly focus on networks of small or medium size of up to a few hundred nodes. For large networks, simulated expression data usually consist of hundreds or thousands of profiles with different perturbations or knock-outs, which is uncommon in real experiments due to their cost and the amount of work required. Thus, the performances of co-expression network analysis methods on large co-expression networks consisting of a few thousand nodes, with only a small number of profiles with a single perturbation, which more accurately reflect normal experimental conditions, are generally uncharacterized and unknown. METHODS: We proposed a novel network inference methods based on Relevance Low order Partial Correlation (RLowPC). RLowPC method uses a two-step approach to select on the high-confidence edges first by reducing the search space by only picking the top ranked genes from an intial partial correlation analysis and, then computes the partial correlations in the confined search space by only removing the linear dependencies from the shared neighbours, largely ignoring the genes showing lower association. RESULTS: We selected six co-expression-based methods with good performance in evaluation studies from the literature: Partial correlation, PCIT, ARACNE, MRNET, MRNETB and CLR. The evaluation of these methods was carried out on simulated time-series data with various network sizes ranging from 100 to 3000 nodes. Simulation results show low precision and recall for all of the above methods for large networks with a small number of expression profiles. We improved the inference significantly by refinement of the top weighted edges in the pre-inferred partial correlation networks using RLowPC. We found improved performance by partitioning large networks into smaller co-expressed modules when assessing the method performance within these modules. CONCLUSIONS: The evaluation results show that current methods suffer from low precision and recall for large co-expression networks where only a small number of profiles are available. The proposed RLowPC method effectively reduces the indirect edges predicted as regulatory relationships and increases the precision of top ranked predictions. Partitioning large networks into smaller highly co-expressed modules also helps to improve the performance of network inference methods. The RLowPC R package for network construction, refinement and evaluation is available at GitHub: https://github.com/wyguo/RLowPC .


Subject(s)
Gene Regulatory Networks , Systems Biology/methods , Cluster Analysis , Sample Size
8.
Nucleic Acids Res ; 45(9): 5061-5073, 2017 May 19.
Article in English | MEDLINE | ID: mdl-28402429

ABSTRACT

Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.


Subject(s)
Alternative Splicing , Arabidopsis/genetics , Genes, Insect , Transcriptome , Genetic Variation , Proteomics , RNA, Untranslated , Reference Values , Reproducibility of Results , Sequence Analysis, RNA , Transcription, Genetic
9.
New Phytol ; 208(1): 96-101, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26111100

ABSTRACT

RNA-sequencing (RNA-seq) allows global gene expression analysis at the individual transcript level. Accurate quantification of transcript variants generated by alternative splicing (AS) remains a challenge. We have developed a comprehensive, nonredundant Arabidopsis reference transcript dataset (AtRTD) containing over 74 000 transcripts for use with algorithms to quantify AS transcript isoforms in RNA-seq. The AtRTD was formed by merging transcripts from TAIR10 and novel transcripts identified in an AS discovery project. We have estimated transcript abundance in RNA-seq data using the transcriptome-based alignment-free programmes Sailfish and Salmon and have validated quantification of splicing ratios from RNA-seq by high resolution reverse transcription polymerase chain reaction (HR RT-PCR). Good correlations between splicing ratios from RNA-seq and HR RT-PCR were obtained demonstrating the accuracy of abundances calculated for individual transcripts in RNA-seq. The AtRTD is a resource that will have immediate utility in analysing Arabidopsis RNA-seq data to quantify differential transcript abundance and expression.


Subject(s)
Alternative Splicing , Arabidopsis/genetics , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Protein Isoforms/analysis , RNA, Messenger/analysis , Sequence Analysis, RNA/methods , Algorithms , Base Sequence , Datasets as Topic , Genes, Plant , RNA Splicing , Reference Values , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Software , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL