Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 931: 172867, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38688363

ABSTRACT

Untangling the consumption rates of psychiatric drugs and their metabolites/ transformation products-(TPs) through wastewater gains attention lately. However, the potential environmental impact caused by their release remains ambiguous. As it follows, the monitoring of this class of pharmaceuticals as well as the evaluation of their potential toxicity is a matter of high concern. In the light of the above, here, wastewater samples, were collected in a 1-year and a half sampling campaign (2020-2021) and were further subjected to solid phase extraction. A Q Exactive Focus Orbitrap mass analyzer was employed for the analysis of the samples. For the data curation, except of the monitoring of targets, a comprehensive suspect screening workflow was developed and slightly optimized based on a lab made HRMS database for the investigation of legally or illegally prescribed psychiatric drugs and their relevant metabolites/TPs in influents and effluents. Carbamazepine and amisulpride were quantified at the highest mean concentrations 243 and 225 ng/L respectively, in influents. In effluents, the highest mean concentrations were calculated for carbamazepine (180 ng/L) and venlafaxine (117 ng/L). The implementation of suspect screening approach enhanced the comprehensiveness of analysis by detecting 29 compounds not included in the target list. O-Desmethylvenlafaxine was the predominant metabolite in influents presenting a mean concentration equal to 87 ng/L while the same pattern was also noticed in effluents where the mean concentration was up to 91 ng/L. From the group of suspect compounds for which no analytical standards were available, the predominant compounds with detection frequency 100 % were norephedrine and codeine in influents while in effluents, oxazepam was detected in 81 % of the analyzed samples. Finally, in silico and mathematical tools were employed for the assessment of the risk posed to environmental systems. Most of the detected compounds present high risk in all trophic levels.


Subject(s)
Environmental Monitoring , Psychotropic Drugs , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Psychotropic Drugs/analysis , Environmental Monitoring/methods , Mass Spectrometry/methods , Solid Phase Extraction
2.
Chemosphere ; 350: 141064, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159738

ABSTRACT

The extraction of trace elements from soil with DTPA is a widely used protocol across laboratories. There is a possible "hidden" discrepancy regarding the results obtained from the extractions, i.e., ambient laboratory temperature and soil properties. In this study, the possible influence of these factors on the extractability of the available forms of Cu, Fe, Pb, Mn, Ni, and Zn, measured with DTPA were studied. Α series of extractions was carried out on a soil sample under normal laboratory temperatures, which fluctuated throughout the year, from 15 to 33.9 °C. In other 144 soil samples, the prevailing physico-chemical properties of soil were evaluated (pH, organic C, clay, CaCO3) that affected the percentage of DTPA extractability relative to the pseudo-total determined content. A strong positive correlation of all metals versus increased ambient temperature was found. Cu had an R2 of 0.897, Fe 0.970, Mn 0.957, Ni 0.938, Pb 0.876, and, Zn 0.922, all highly significant. Extracted Mn exhibited a 6.5-fold increase at the highest temperature of 33.9 οC compared to the lowest. Similar increasing trend was observed for Fe, and Ni, and smaller for Cu, Zn, and Pb. Inherent soil properties affected the percentage of extractability relative to the total content: extractability of Cu, Fe, Mn, and Ni was affected negatively by pH, and the extractability of the studied metals with CaCO3 content. Other soil properties (organic C and clay/sand content) also had an effect, not as pronounced as that of pH and CaCO3. This signifies the necessity of employing standard conditions for routine extractions such as DTPA so that data may be comparable. Also these identified discrepancies may have consequences in the extractability and availability of soil micronutrients and toxic elements regarding climate change. This study aspires to play the role of an initial step towards more robust investigations that would suggest ways of correcting temperature and soil characteristics discrepancies across laboratories.


Subject(s)
Metals, Heavy , Soil Pollutants , Trace Elements , Trace Elements/analysis , Soil/chemistry , Temperature , Clay , Climate Change , Lead , Pentetic Acid , Soil Pollutants/analysis , Metals, Heavy/analysis
3.
Plants (Basel) ; 11(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36501365

ABSTRACT

Lentil is an important legume crop for human and animal dietary needs due to its high nutritional value. The effect of genotype and growing environment was studied on seed yield (SY), crude protein (CP) and mineral nutrients (macro and micronutrients) of five lentil genotypes grown at four diverse locations for two consecutive years under organic and conventional farming. The location within each year was considered as a separate environment (E). Data were subjected to over environment two-way analysis of variance, while a genotype (G) plus genotype × environment (GGE) biplot analysis was performed. Our results indicated the E as the main source of variation (62.3-99.8%) for SY, CP and macronutrients for both farming systems, while for micronutrients it was either the E or the G × E interaction. Different environments were identified as ideal for the parameters studied: E6 (Larissa/Central Greece/2020) produced the higher CP values (organic: 32.0%, conventional: 27.5%) and showed the highest discriminating ability that was attributed to the lowest precipitation during the crucial period of pod filling. E7 (Thessaloniki/Central Macedonia/2020) and E8 (Orestiada/Thrace/2020) had fertile soils and ample soil moisture and were the most discriminating for high micronutrient content under both farming systems. Location Orestiada showed the highest SY for both organic (1.87-2.28 t ha-1) and conventional farming (1.56-2.89 t ha-1) regardless the year of cultivation and is proposed as an ideal location for lentil cultivation or for breeding for high SY. Genotypes explained a low percentage of the total variability; however, two promising genotypes were identified. Cultivar "Samos" demonstrated a wide adaptation capacity exhibiting stable and high SY under both organic and conventional farming, while the red lentil population "03-24L" showed very high level of seed CP, Fe and Mn contents regardless E or farming system. This genetic material could be further exploited as parental material aiming to develop lentil varieties that could be utilized as "functional" food or consist of a significant feed ingredient.

4.
J Trace Elem Med Biol ; 49: 252-260, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29472130

ABSTRACT

A basic knowledge of the dynamics of zinc (Zn) in soils, water and plants are important steps in achieving sustainable solutions to the problem of Zn deficiency in crops and humans. This paper aims at reviewing and discussing the relevant aspects of the role of Zn in the soil-water-plant agro biological system: from the origins of Zn in soils and water to soil Zn deficiency distribution and the factors affecting soil Zn availability to plants, therefore to elucidate the strategies potentially help combating Zn deficiency problems in soil-plant-human continuum. This necessitates identifying the main areas of Zn-deficient soils and food crops and treating them with Zn amendments, mainly fertilizers in order to increase Zn uptake and Zn use efficiency to crops. In surface and groundwater, Zn enters the environment from various sources but predominately from the erosion of soil particles containing Zn. In plants is involved in several key physiological functions (membrane structure, photosynthesis, protein synthesis, and drought and disease tolerance) and is required in small but nevertheless critical contents. Several high revenue food crops such as beans, citrus, corn, rice etc are highly susceptible to Zn deficiency and biofortification is considered as a promising method to accumulate high content of Zn especially in grains. With the world population continuing to rise and the problems of producing extra food rich in Zn to provide an adequate standard of nutrition to increase, it is very important that any losses in production easily corrected so as Zn deficiencies are prevented.


Subject(s)
Soil/chemistry , Water/chemistry , Zinc/chemistry , Crops, Agricultural/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...