Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 360: 79-91, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36341973

ABSTRACT

This study has employed mammalian transient expression systems to generate afucosylated antibodies and antibody Fc mutants for rapid candidate screening in discovery and early development. While chemical treatment with the fucose analogue 2-fluoro-peracetyl-fucose during transient expression only partially produced antibodies with afucosylated N-glycans, the genetic inactivation of the FUT8 gene in ExpiCHO-S™ by CRISPR/Cas9 enabled the transient production of fully afucosylated antibodies. Human IgG1 and murine IgG2a generated by the ExpiCHOfut8KO cell line possessed a 8-to-11-fold enhanced FcγRIIIa binding activity in comparison with those produced by ExpiCHO-S™. The Fc mutant S239D/S298A/I332E produced by ExpiCHO-S™ had an approximate 2-fold higher FcγRIIIa affinity than that of the afucosylated wildtype molecule, although it displayed significantly lower thermal-stability. When the Fc mutant was produced in the ExpiCHOfut8KO cell line, the resulting afucosylated Fc mutant antibody had an additional approximate 6-fold increase in FcγRIIIa binding affinity. This synergistic effect between afucosylation and the Fc mutations was further verified by a natural killer (NK) cell activation assay. Together, these results have not only established an efficient large-scale transient CHO system for rapid production of afucosylated antibodies, but also confirmed a cooperative impact between afucosylation and Fc mutations on FcγRIIIa binding and NK cell activation.


Subject(s)
Immunoglobulin G , Killer Cells, Natural , Humans , Animals , Mice , Immunoglobulin G/genetics , Mammals
2.
J Biol Chem ; 295(10): 3115-3133, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32005658

ABSTRACT

The fortuitously discovered antiaging membrane protein αKlotho (Klotho) is highly expressed in the kidney, and deletion of the Klotho gene in mice causes a phenotype strikingly similar to that of chronic kidney disease (CKD). Klotho functions as a co-receptor for fibroblast growth factor 23 (FGF23) signaling, whereas its shed extracellular domain, soluble Klotho (sKlotho), carrying glycosidase activity, is a humoral factor that regulates renal health. Low sKlotho in CKD is associated with disease progression, and sKlotho supplementation has emerged as a potential therapeutic strategy for managing CKD. Here, we explored the structure-function relationship and post-translational modifications of sKlotho variants to guide the future design of sKlotho-based therapeutics. Chinese hamster ovary (CHO)- and human embryonic kidney (HEK)-derived WT sKlotho proteins had varied activities in FGF23 co-receptor and ß-glucuronidase assays in vitro and distinct properties in vivo Sialidase treatment of heavily sialylated CHO-sKlotho increased its co-receptor activity 3-fold, yet it remained less active than hyposialylated HEK-sKlotho. MS and glycopeptide-mapping analyses revealed that HEK-sKlotho is uniquely modified with an unusual N-glycan structure consisting of N,N'-di-N-acetyllactose diamine at multiple N-linked sites, one of which at Asn-126 was adjacent to a putative GalNAc transfer motif. Site-directed mutagenesis and structural modeling analyses directly implicated N-glycans in Klotho's protein folding and function. Moreover, the introduction of two catalytic glutamate residues conserved across glycosidases into sKlotho enhanced its glucuronidase activity but decreased its FGF23 co-receptor activity, suggesting that these two functions might be structurally divergent. These findings open up opportunities for rational engineering of pharmacologically enhanced sKlotho therapeutics for managing kidney disease.


Subject(s)
Glucuronidase/metabolism , Renal Insufficiency, Chronic/pathology , Animals , CHO Cells , Catalytic Domain , Chromatography, High Pressure Liquid , Cricetinae , Cricetulus , Fibroblast Growth Factor-23 , Glomerular Filtration Rate/drug effects , Glucuronidase/chemistry , Glucuronidase/genetics , Glycopeptides/analysis , HEK293 Cells , Half-Life , Humans , Klotho Proteins , Mass Spectrometry , Mutagenesis, Site-Directed , Protein Processing, Post-Translational , Rats , Recombinant Proteins/biosynthesis , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Renal Insufficiency, Chronic/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/veterinary , Structure-Activity Relationship
3.
Nat Chem Biol ; 15(7): 730-736, 2019 07.
Article in English | MEDLINE | ID: mdl-31110306

ABSTRACT

N-linked glycosylation in monoclonal antibodies (mAbs) is crucial for structural and functional properties of mAb therapeutics, including stability, pharmacokinetics, safety and clinical efficacy. The biopharmaceutical industry currently lacks tools to precisely control N-glycosylation levels during mAb production. In this study, we engineered Chinese hamster ovary cells with synthetic genetic circuits to tune N-glycosylation of a stably expressed IgG. We knocked out two key glycosyltransferase genes, α-1,6-fucosyltransferase (FUT8) and ß-1,4-galactosyltransferase (ß4GALT1), genomically integrated circuits expressing synthetic glycosyltransferase genes under constitutive or inducible promoters and generated antibodies with concurrently desired fucosylation (0-97%) and galactosylation (0-87%) levels. Simultaneous and independent control of FUT8 and ß4GALT1 expression was achieved using orthogonal small molecule inducers. Effector function studies confirmed that glycosylation profile changes affected antibody binding to a cell surface receptor. Precise and rational modification of N-glycosylation will allow new recombinant protein therapeutics with tailored in vitro and in vivo effects for various biotechnological and biomedical applications.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Cell Engineering , Small Molecule Libraries/pharmacology , Animals , Antibodies, Monoclonal/chemistry , CHO Cells , Cricetulus , Glycosylation/drug effects , Small Molecule Libraries/chemistry
4.
Biotechnol Prog ; 35(1): e2724, 2019 01.
Article in English | MEDLINE | ID: mdl-30299005

ABSTRACT

Large-scale transient expression in mammalian cells is a rapid protein production technology often used to shorten overall timelines for biotherapeutics drug discovery. In this study we demonstrate transient expression in a Chinese hamster ovary (CHO) host (ExpiCHO-S™) cell line capable of achieving high recombinant antibody expression titers, comparable to levels obtained using human embryonic kidney (HEK) 293 cells. For some antibodies, ExpiCHO-S™ cells generated protein materials with better titers and improved protein quality characteristics (i.e., less aggregation) than those from HEK293. Green fluorescent protein imaging data indicated that ExpiCHO-S™ displayed a delayed but prolonged transient protein expression process compared to HEK293. When therapeutic glycoproteins containing non-Fc N-linked glycans were expressed in transient ExpiCHO-S™, the glycan pattern was unexpectedly found to have few sialylated N-glycans, in contrast to glycans produced within a stable CHO expression system. To improve N-glycan sialylation in transient ExpiCHO-S™, we co-transfected galactosyltransferase and sialyltransferase genes along with the target genes, as well as supplemented the culture medium with glycan precursors. The authors have demonstrated that co-transfection of glycosyltransferases combined with medium addition of galactose and uridine led to increased sialylation content of N-glycans during transient ExpiCHO-S™ expression. These results have provided a scientific basis for developing a future transient CHO system with N-glycan compositions that are similar to those profiles obtained from stable CHO protein production systems. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2724, 2019.


Subject(s)
Antibody Formation/physiology , Animals , CHO Cells , Cricetinae , Cricetulus , Glycosylation , HEK293 Cells , Humans , Polysaccharides/metabolism
5.
J Biol Chem ; 293(38): 14798-14811, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30072381

ABSTRACT

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a well-characterized, abundant protein kinase that regulates a diverse set of functions in a tissue-specific manner. For example, in heart muscle, CaMKII regulates Ca2+ homeostasis, whereas in neurons, CaMKII regulates activity-dependent dendritic remodeling and long-term potentiation (LTP), a neurobiological correlate of learning and memory. Previously, we identified the GTPase Rem2 as a critical regulator of dendrite branching and homeostatic plasticity in the vertebrate nervous system. Here, we report that Rem2 directly interacts with CaMKII and potently inhibits the activity of the intact holoenzyme, a previously unknown Rem2 function. Our results suggest that Rem2 inhibition involves interaction with both the CaMKII hub domain and substrate recognition domain. Moreover, we found that Rem2-mediated inhibition of CaMKII regulates dendritic branching in cultured hippocampal neurons. Lastly, we report that substitution of two key amino acid residues in the Rem2 N terminus (Arg-79 and Arg-80) completely abolishes its ability to inhibit CaMKII. We propose that our biochemical findings will enable further studies unraveling the functional significance of Rem2 inhibition of CaMKII in cells.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Monomeric GTP-Binding Proteins/physiology , Animals , Calcium/metabolism , Cells, Cultured , HEK293 Cells , Hippocampus/cytology , Hippocampus/enzymology , Hippocampus/metabolism , Homeostasis , Humans , Learning , Long-Term Potentiation , Memory , Mice , Monomeric GTP-Binding Proteins/chemistry , Neuronal Plasticity , Neurons/metabolism , Phosphorylation , Substrate Specificity
6.
Bioinformatics ; 31(24): 4038-40, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26323714

ABSTRACT

UNLABELLED: Gene targeting is a protocol for introducing a mutation to a specific gene in an organism. Because of the importance of in vivo assessment of gene function and modeling of human diseases, this technique has been widely adopted to generate a large number of mutant mouse models. Due to the recent breakthroughs in high-throughput sequencing technologies, RNA-Seq experiments have been performed on many of these mouse models, leading to hundreds of publicly available datasets. To facilitate the reuse of these datasets, we collected the associated metadata and organized them in a database called RNASeqMetaDB. The metadata were manually curated to ensure annotation consistency. We developed a web server to allow easy database navigation and data querying. Users can search the database using multiple parameters like genes, diseases, tissue types, keywords and associated publications in order to find datasets that match their interests. Summary statistics of the metadata are also presented on the web server showing interesting global patterns of RNA-Seq studies. AVAILABILITY AND IMPLEMENTATION: Freely available on the web at http://rnaseqmetadb.ece.tamu.edu.


Subject(s)
Databases, Nucleic Acid , Sequence Analysis, RNA , Software , Animals , High-Throughput Nucleotide Sequencing , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...