Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Medicines (Basel) ; 10(7)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37505064

ABSTRACT

Background. Many anti-cancer drugs used in clinical practice cause adverse events such as oral mucositis, neurotoxicity, and extravascular leakage. We have reported that two 3-styrylchromone derivatives, 7-methoxy-3-[(1E)-2-phenylethenyl]-4H-1-benzopyran-4-one (Compound A) and 3-[(1E)-2-(4-hydroxyphenyl)ethenyl]-7-methoxy-4H-1-benzopyran-4-one (Compound B), showed the highest tumor-specificity against human oral squamous cell carcinoma (OSCC) cell lines among 291 related compounds. After confirming their superiority by comparing their tumor specificity with newly synthesized 65 derivatives, we investigated the neurotoxicity of these compounds in comparison with four popular anti-cancer drugs. Methods: Tumor-specificity (TSM, TSE, TSN) was evaluated as the ratio of mean CC50 for human normal oral mesenchymal (gingival fibroblast, pulp cell), oral epithelial cells (gingival epithelial progenitor), and neuronal cells (PC-12, SH-SY5Y, LY-PPB6, differentiated PC-12) to OSCC cells (Ca9-22, HSC-2), respectively. Results: Compounds A and B showed one order of magnitude higher TSM than newly synthesized derivatives, confirming its prominent tumor-specificity. Docetaxel showed one order of magnitude higher TSM, but two orders of magnitude lower TSE than Compounds A and B. Compounds A and B showed higher TSM, TSE, and TSN values than doxorubicin, 5-FU, and cisplatin, damaging OSCC cells at concentrations that do not affect the viability of normal epithelial and neuronal cells. QSAR prediction based on the Tox21 database suggested that Compounds A and B may inhibit the signaling pathway of estrogen-related receptors.

2.
Bioorg Chem ; 87: 594-600, 2019 06.
Article in English | MEDLINE | ID: mdl-30933784

ABSTRACT

A series of 2-(indolylmethylidene)-2,3-dihydro-1-benzofuran-3-ones (aurone-indole hybrids) and 2-(indolyl)-4H-chromen-4-ones (flavone-indole hybrids) were designed, synthesized, and their monoamine oxidase (MAO) A and B inhibitory activities were evaluated. Compounds 5b and 11b showed potent inhibitory activities against MAO-A, comparable to that of pargyline used as a positive control, and most of the compounds, except for 2a and 10b, showed potent inhibitory activities against MAO-B. Compound 9a was the most potent and highly selective inhibitor of MAO-B (IC50 value for MAO-B: 0.0026 µM, and MAO-A: >100 µM). Comparison of the inhibitory activities of 1a vs. 9a vs. 13a and 1b vs. 7b vs. 11b suggested that methoxy substitution at R1 on the A-rings of flavonoids increases MAO-A inhibition whereas methoxy substitution at R2 increased MAO-B inhibition. Comparison of 4a vs. 10a, 6a vs. 11a, 3b vs. 8b and 4b vs. 9b showed incremental increases in MAO-B inhibitory activity by R2 substitution on the A ring. Comparison of the MAO-B inhibitory effects of the flavone-indole hybrids and aurone-indole hybrids showed that most of the aurone-indole hybrids were stronger inhibitors than the corresponding flavone-indole hybrids. Molecular docking analysis of compounds 1a and 9a with MAO-B further supported the above structural effects of these compounds on MAO-B inhibitory activity. This is the first report identifying aurone-indole hybrids as potent MAO-B inhibitors. The results reported here suggest that 2-(1H-indol-1-ylmethylene)-6-methoxy-3(2H)-benzofuranone (9a) might be a useful lead for the design and development of novel MAO-B inhibitors.


Subject(s)
Benzofurans/pharmacology , Benzopyrans/pharmacology , Drug Design , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Benzofurans/chemical synthesis , Benzofurans/chemistry , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Recombinant Proteins/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...