Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 159: 105147, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34400280

ABSTRACT

Tuberculosis caused by Mycobacterium tuberculosis remains a serious global public health threat. M. tuberculosis PE and PPE proteins are closely involved in pathogen-host interaction. To explore the predicted function of the M. tuberculosis PE17 (Rv1646), we heterologously expressed PE17 in a non-pathogenic Mycobacterium smegmatis strain (Ms_PE17). PE17 can reduce the survival of M. smegmatis within macrophages associated with altering the transcription levels of inflammatory cytokines IL1ß, IL6, TNFα, and IL10 in Ms_PE17 infected macrophages through JNK signaling. Furthermore, macrophages apoptosis was increased upon Ms_PE17 infection in a caspases-dependent manner, accompanied by the activation of the Endoplasmic Reticulum stress IRE1α/ASK1/JNK signaling pathway. This can be largely interpreted by the epigenetic changes through reduced H3K9me3 chromatin occupancy post Ms_PE17 infection. To our knowledge, this is the first report that PE17 altered the macrophages apoptosis via H3K9me3 mediated chromatin remodeling.


Subject(s)
Mycobacterium tuberculosis , Apoptosis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chromatin Assembly and Disassembly , Endoribonucleases , Mycobacterium smegmatis/genetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Protein Serine-Threonine Kinases
2.
Infect Genet Evol ; 94: 105019, 2021 10.
Article in English | MEDLINE | ID: mdl-34333158

ABSTRACT

Mycobacterium tuberculosis (Mtb) survival and virulence largely reside on its ability to manipulate the host immune response. We have previously shown that M. tuberculosis Raf kinase inhibitor protein (RKIP) Rv2140c regulates diverse phosphorylation events in M. smegmatis. However, its role during infection is unknown. In this report, we show that Rv2140c can mimic the mammalian RKIP function. Rv2140c inhibit the activation of extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB) via decreasing the phosphorylation capacity of upstream mediators MEK1, ERK1/2, and IKKα/ß, thus leading to a reduction in pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. This effect can be reversed by RKIP inhibitor locostatin. Furthermore Rv2140c mediates apoptosis associated with activation of caspases cascades. This modulation enhances the intracellular survival of M. smegmatis within macrophage. We propose that Rv2140c is a multifunctional virulence factor and a promising novel anti-Tuberculosis drug target.


Subject(s)
Bacterial Proteins/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Immunity, Innate , Macrophages/immunology , Mycobacterium tuberculosis/metabolism , NF-kappa B/metabolism , Phosphorylation , Signal Transduction
3.
Int Immunopharmacol ; 94: 107363, 2021 May.
Article in English | MEDLINE | ID: mdl-33667868

ABSTRACT

Tuberculosis caused by Mycobacterium tuberculosis infection remains one of the top ten causes of deaths worldwide. M. tuberculosis genome devoted 10% capacity for highly repeated PE/PPE genes family. To explore the role of PPE10 in host-pathogen interaction, PPE10 encoding gene Rv0442c was heterologously expressed in the nonpathogenic M. smegmatis strain. PPE10 altered the bacterial cell surface properties, colony morphology, and biofilm formation. Ms_PPE10 showed more resistance to stress conditions such as diamide, and low pH, as well as higher survival within the macrophage. Moreover, the host's cell apoptosis was regulated via decreased expression of caspases, IL-1, IL-6, and TNF-α through the Linear Ubiquitin Chain Assembly Complex (LUBAC) HOIP-NF-κB signaling axis. The study revealed novel insights into the mechanism of action of the PPE family.


Subject(s)
Host-Pathogen Interactions , Mycobacterium tuberculosis , Apoptosis , Cytokines/genetics , Humans , Hydrogen-Ion Concentration , Mycobacterium tuberculosis/genetics , NF-kappa B/metabolism , Signal Transduction , THP-1 Cells , Ubiquitin-Protein Ligases/genetics
4.
Infect Genet Evol ; 83: 104350, 2020 09.
Article in English | MEDLINE | ID: mdl-32380312

ABSTRACT

Methylation epigenetically regulates many pivotal biological processes. Mycobacterium tuberculosis, the pathogen of tuberculosis, can modulate host methylome. The methylated genes, sites, signaling pathway, chromatin remodeling, especially the immune related genes such as cytokines and chemokines, drug resistance and vaccines efficacy relevant genes were summarized in this paper. The results showed that methylation plays important roles in immune evasion, pathogenesis, persistence, disease progression, active, drug responder and non-responder. This will inform better practice for the development of new drugs and vaccines to eradicate tuberculosis.


Subject(s)
Host-Pathogen Interactions/physiology , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/microbiology , DNA Methylation , Drug Resistance, Bacterial , Epigenesis, Genetic , Gene Expression Regulation , Histones/metabolism , Humans , Immune Evasion , Methylation , Tuberculosis/drug therapy , Tuberculosis/genetics , Tuberculosis/metabolism , Tuberculosis Vaccines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...