Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(26): eadj2020, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38924411

ABSTRACT

Chronic wounds are a common and costly complication of diabetes, where multifactorial defects contribute to dysregulated skin repair, inflammation, tissue damage, and infection. We previously showed that aspects of the diabetic foot ulcer microbiota were correlated with poor healing outcomes, but many microbial species recovered remain uninvestigated with respect to wound healing. Here, we focused on Alcaligenes faecalis, a Gram-negative bacterium that is frequently recovered from chronic wounds but rarely causes infection. Treatment of diabetic wounds with A. faecalis accelerated healing during early stages. We investigated the underlying mechanisms and found that A. faecalis treatment promotes reepithelialization of diabetic keratinocytes, a process that is necessary for healing but deficient in chronic wounds. Overexpression of matrix metalloproteinases in diabetes contributes to failed epithelialization, and we found that A. faecalis treatment balances this overexpression to allow proper healing. This work uncovers a mechanism of bacterial-driven wound repair and provides a foundation for the development of microbiota-based wound interventions.


Subject(s)
Alcaligenes faecalis , Keratinocytes , Matrix Metalloproteinases , Wound Healing , Alcaligenes faecalis/metabolism , Animals , Keratinocytes/metabolism , Keratinocytes/microbiology , Humans , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Diabetic Foot/microbiology , Diabetic Foot/pathology , Diabetic Foot/metabolism , Mice , Re-Epithelialization , Male
2.
J Virol ; : e0017424, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869286

ABSTRACT

Epidermodysplasia verruciformis (EV) is a rare genetic skin disorder that is characterized by the development of papillomavirus-induced skin lesions that can progress to squamous cell carcinoma (SCC). Certain high-risk, cutaneous ß-genus human papillomaviruses (ß-HPVs), in particular HPV5 and HPV8, are associated with inducing EV in individuals who have a homozygous mutation in one of three genes tied to this disease: EVER1, EVER2, or CIB1. EVER1 and EVER2 are also known as TMC6 and TMC8, respectively. Little is known about the biochemical activities of EVER gene products or their roles in facilitating EV in conjunction with ß-HPV infection. To investigate the potential effect of EVER genes on papillomavirus infection, we pursued in vivo infection studies by infecting Ever2-null mice with mouse papillomavirus (MmuPV1). MmuPV1 shares characteristics with ß-HPVs including similar genome organization, shared molecular activities of their early, E6 and E7, oncoproteins, the lack of a viral E5 gene, and the capacity to cause skin lesions that can progress to SCC. MmuPV1 infections were conducted both in the presence and absence of UVB irradiation, which is known to increase the risk of MmuPV1-induced pathogenesis. Infection with MmuPV1 induced skin lesions in both wild-type and Ever2-null mice with and without UVB. Many lesions in both genotypes progressed to malignancy, and the disease severity did not differ between Ever2-null and wild-type mice. However, somewhat surprisingly, lesion growth and viral transcription was decreased, and lesion regression was increased in Ever2-null mice compared with wild-type mice. These studies demonstrate that Ever2-null mice infected with MmuPV1 do not exhibit the same phenotype as human EV patients infected with ß-HPVs.IMPORTANCEHumans with homozygous mutations in the EVER2 gene develop epidermodysplasia verruciformis (EV), a disease characterized by predisposition to persistent ß-genus human papillomavirus (ß-HPV) skin infections, which can progress to skin cancer. To investigate how EVER2 confers protection from papillomaviruses, we infected the skin of homozygous Ever2-null mice with mouse papillomavirus MmuPV1. Like in humans with EV, infected Ever2-null mice developed skin lesions that could progress to cancer. Unlike in humans with EV, lesions in these Ever2-null mice grew more slowly and regressed more frequently than in wild-type mice. MmuPV1 transcription was higher in wild-type mice than in Ever2-null mice, indicating that mouse EVER2 does not confer protection from papillomaviruses. These findings suggest that there are functional differences between MmuPV1 and ß-HPVs and/or between mouse and human EVER2.

4.
Nat Rev Microbiol ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575708

ABSTRACT

The skin barrier protects the human body from invasion by exogenous and pathogenic microorganisms. A breach in this barrier exposes the underlying tissue to microbial contamination, which can lead to infection, delayed healing, and further loss of tissue and organ integrity. Delayed wound healing and chronic wounds are associated with comorbidities, including diabetes, advanced age, immunosuppression and autoimmune disease. The wound microbiota can influence each stage of the multi-factorial repair process and influence the likelihood of an infection. Pathogens that commonly infect wounds, such as Staphylococcus aureus and Pseudomonas aeruginosa, express specialized virulence factors that facilitate adherence and invasion. Biofilm formation and other polymicrobial interactions contribute to host immunity evasion and resistance to antimicrobial therapies. Anaerobic organisms, fungal and viral pathogens, and emerging drug-resistant microorganisms present unique challenges for diagnosis and therapy. In this Review, we explore the current understanding of how microorganisms present in wounds impact the process of skin repair and lead to infection through their actions on the host and the other microbial wound inhabitants.

5.
Cell Rep ; 42(10): 113281, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37858460

ABSTRACT

Strain-level variation in Staphylococcus aureus is a factor that contributes to disease burden and clinical outcomes in skin disorders and chronic wounds. However, the microbial mechanisms that drive these variable host responses are poorly understood. To identify mechanisms underlying strain-specific outcomes, we perform high-throughput phenotyping screens on S. aureus isolates cultured from diabetic foot ulcers. Isolates from non-healing wounds produce more staphyloxanthin, a cell membrane pigment. In murine diabetic wounds, staphyloxanthin-producing isolates delay wound closure significantly compared with staphyloxanthin-deficient isolates. Staphyloxanthin promotes resistance to oxidative stress and enhances bacterial survival in neutrophils. Comparative genomic and transcriptomic analysis of genetically similar clinical isolates with disparate staphyloxanthin phenotypes reveals a mutation in the sigma B operon, resulting in marked differences in stress response gene expression. Our work illustrates a framework to identify traits that underlie strain-level variation in disease burden and suggests more precise targets for therapeutic intervention in S. aureus-positive wounds.


Subject(s)
Diabetes Mellitus , Staphylococcal Infections , Animals , Mice , Staphylococcus aureus/metabolism , Staphylococcal Infections/microbiology , Wound Healing
6.
bioRxiv ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37425836

ABSTRACT

Chronic wounds are a common and costly complication of diabetes, where multifactorial defects contribute to dysregulated skin repair, inflammation, tissue damage, and infection. We previously showed that aspects of the diabetic foot ulcer microbiota were correlated with poor healing outcomes, but many microbial species recovered remain uninvestigated with respect to wound healing. Here we focused on Alcaligenes faecalis , a Gram-negative bacterium that is frequently recovered from chronic wounds but rarely causes infection. Treatment of diabetic wounds with A. faecalis accelerated healing during early stages. We investigated the underlying mechanisms and found that A. faecalis treatment promotes re-epithelialization of diabetic keratinocytes, a process which is necessary for healing but deficient in chronic wounds. Overexpression of matrix metalloproteinases in diabetes contributes to failed epithelialization, and we found that A. faecalis treatment balances this overexpression to allow proper healing. This work uncovers a mechanism of bacterial-driven wound repair and provides a foundation for the development of microbiota-based wound interventions.

7.
mSphere ; 8(4): e0017723, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37404023

ABSTRACT

The microbiota mediate multiple aspects of skin barrier function, including colonization resistance to pathogens such as Staphylococcus aureus. The endogenous skin microbiota limits S. aureus colonization via competition and direct inhibition. Novel mechanisms of colonization resistance are promising therapeutic targets for drug-resistant infections, such as those caused by methicillin-resistant S. aureus (MRSA). Here, we developed and characterized a swine model of topical microbiome perturbation and MRSA colonization. As in other model systems, topical antimicrobial treatment had a little discernable effect on community diversity though the overall microbial load was sensitive to multiple types of intervention, including swabbing. In parallel, we established a porcine skin culture collection and screened 7,700 isolates for MRSA inhibition. Using genomic and phenotypic criteria, we curated three isolates to investigate whether prophylactic colonization would inhibit MRSA colonization in vivo. The three-member consortium together, but not individually, provided protection against MRSA colonization, suggesting cooperation and/or synergy among the strains. Inhibitory isolates were represented across all major phyla of the pig skin microbiota and did not have a strong preference for inhibiting closely related species, suggesting that relatedness is not a condition of antagonism. These findings reveal the porcine skin as an underexplored reservoir of skin commensal species with the potential to prevent MRSA colonization and infection. IMPORTANCE The skin microbiota is protective against pathogens or opportunists such as S. aureus, the most common cause of skin and soft tissue infections. S. aureus can colonize normal skin and nasal passages, and colonization is a risk factor for infection, especially on breach of the skin barrier. Here, we established a pig model to study the competitive mechanisms of the skin microbiota and their role in preventing colonization by MRSA. This drug-resistant strain is also a livestock pathogen, and swine herds can be reservoirs of MRSA carriage. From 7,700 cultured skin isolates, we identified 37 unique species across three phyla that inhibited MRSA. A synthetic community of three inhibitory isolates provided protection together, but not individually, in vivo in a murine model of MRSA colonization. These findings suggest that antagonism is widespread in the pig skin microbiota, and these competitive interactions may be exploited to prevent MRSA colonization.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Microbiota , Staphylococcal Infections , Animals , Swine , Mice , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcus aureus/genetics , Nasal Cavity , Staphylococcal Infections/prevention & control , Staphylococcal Infections/veterinary
8.
J Invest Dermatol ; 143(10): 1964-1972.e4, 2023 10.
Article in English | MEDLINE | ID: mdl-37004877

ABSTRACT

Ligand activation of the aryl hydrocarbon receptor (AHR) accelerates keratinocyte differentiation and the formation of the epidermal permeability barrier. Several classes of lipids, including ceramides, are critical to the epidermal permeability barrier. In normal human epidermal keratinocytes, the AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin, increased RNA levels of ceramide metabolism and transport genes: uridine diphosphate glucose ceramide glucosyltransferase (UGCG), ABCA12, GBA1, and SMPD1. Levels of abundant skin ceramides were also increased by 2,3,7,8-tetrachlorodibenzo-p-dioxin. These included the metabolites synthesized by UGCG, glucosylceramides, and acyl glucosylceramides. Chromatin immunoprecipitation-sequence analysis and luciferase reporter assays identified UGCG as a direct AHR target. The AHR antagonist, GNF351, inhibited the 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated RNA and transcriptional increases. Tapinarof, an AHR ligand approved for the treatment of psoriasis, increased UGCG RNA, protein, and its lipid metabolites hexosylceramides as well as increased the RNA expression of ABCA12, GBA1, and SMPD1. In Ahr-null mice, Ugcg RNA and hexosylceramides were lower than those in the wild type. These results indicate that the AHR regulates the expression of UGCG, a ceramide-metabolizing enzyme required for ceramide trafficking, keratinocyte differentiation, and epidermal permeability barrier formation.


Subject(s)
Glucosylceramides , Polychlorinated Dibenzodioxins , Animals , Mice , Humans , Glucosylceramides/metabolism , Uridine Diphosphate Glucose , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Ligands , RNA
9.
Cell Host Microbe ; 30(2): 144-146, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35143764

ABSTRACT

Cutibacterium acnes is found in the human skin microbiome. In this issue of Cell Host & Microbe, Conwill et al. investigate the coexistence of C. acnes strains on the skin and find that the skin surface harbors multiple C. acnes lineages, but individual pores are dominated by an individual lineage.


Subject(s)
Microbiota , Propionibacterium acnes , Humans , Propionibacterium acnes/genetics , Skin/microbiology
10.
mBio ; 12(4): e0227721, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34465025

ABSTRACT

The species specificity of papillomaviruses has been a significant roadblock for performing in vivo pathogenesis studies in common model organisms. The Mus musculus papillomavirus type 1 (MmuPV1) causes cutaneous papillomas that can progress to squamous cell carcinomas in laboratory mice. The papillomavirus E6 and E7 genes encode proteins that establish and maintain a cellular milieu that allows for viral genome synthesis and viral progeny synthesis in growth-arrested, terminally differentiated keratinocytes. The E6 and E7 proteins provide this activity by binding to and functionally reprogramming key cellular regulatory proteins. The MmuPV1 E7 protein lacks the canonical LXCXE motif that mediates the binding of multiple viral oncoproteins to the cellular retinoblastoma tumor suppressor protein, RB1. Our proteomic experiments, however, revealed that MmuPV1 E7 still interacts with RB1. We show that MmuPV1 E7 interacts through its C terminus with the C-terminal domain of RB1. Binding of MmuPV1 E7 to RB1 did not cause significant activation of E2F-regulated cellular genes. MmuPV1 E7 expression was shown to be essential for papilloma formation. Experimental infection of mice with MmuPV1 expressing an E7 mutant that is defective for binding to RB1 caused delayed onset, lower incidence, and smaller sizes of papillomas. Our results demonstrate that the MmuPV1 E7 gene is essential and that targeting noncanonical activities of RB1, which are independent of RB1's ability to modulate the expression of E2F-regulated genes, contribute to papillomavirus-mediated pathogenesis. IMPORTANCE Papillomavirus infections cause a variety of epithelial hyperplastic lesions, or warts. While most warts are benign, some papillomaviruses cause lesions that can progress to squamous cell carcinomas, and approximately 5% of all human cancers are caused by human papillomavirus (HPV) infections. The papillomavirus E6 and E7 proteins are thought to function to reprogram host epithelial cells to enable viral genome replication in terminally differentiated, normally growth-arrested cells. E6 and E7 lack enzymatic activities and function by interacting and functionally altering host cell regulatory proteins. Many cellular proteins that can interact with E6 and E7 have been identified, but the biological relevance of these interactions for viral pathogenesis has not been determined. This is because papillomaviruses are species specific and do not infect heterologous hosts. Here, we use a recently established mouse papillomavirus (MmuPV1) model to investigate the role of the E7 protein in viral pathogenesis. We show that MmuPV1 E7 is necessary for papilloma formation. The retinoblastoma tumor suppressor protein (RB1) is targeted by many papillomaviral E7 proteins, including cancer-associated HPVs. We show that MmuPV1 E7 can bind RB1 and that infection with a mutant MmuPV1 virus that expresses an RB1 binding-defective E7 mutant caused smaller and fewer papillomas that arise with delayed kinetics.


Subject(s)
Oncogene Proteins, Viral/metabolism , Papillomaviridae/genetics , Papillomaviridae/pathogenicity , Papillomavirus E7 Proteins/metabolism , Retinoblastoma Binding Proteins/metabolism , Transcription Factors/metabolism , Animals , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Humans , Keratinocytes/virology , Mice , Mice, Nude , Oncogene Proteins, Viral/genetics , Papillomavirus E7 Proteins/genetics , Papillomavirus Infections/virology , Protein Binding , Retinoblastoma Binding Proteins/genetics
11.
PLoS Pathog ; 17(8): e1009812, 2021 08.
Article in English | MEDLINE | ID: mdl-34343212

ABSTRACT

MmuPV1 is a useful model for studying papillomavirus-induced tumorigenesis. We used RNA-seq to look for chimeric RNAs that map to both MmuPV1 and host genomes. In tumor tissues, a higher proportion of total viral reads were virus-host chimeric junction reads (CJRs) (1.9‰ - 7‰) than in tumor-free tissues (0.6‰ - 1.3‰): most CJRs mapped to the viral E2/E4 region. Although most of the MmuPV1 integration sites were mapped to intergenic regions and introns throughout the mouse genome, integrations were seen more than once in several genes: Malat1, Krt1, Krt10, Fabp5, Pard3, and Grip1; these data were confirmed by rapid amplification of cDNA ends (RACE)-Single Molecule Real-Time (SMRT)-seq or targeted DNA-seq. Microhomology sequences were frequently seen at host-virus DNA junctions. MmuPV1 infection and integration affected the expression of host genes. We found that factors for DNA double-stranded break repair and microhomology-mediated end-joining (MMEJ), such as H2ax, Fen1, DNA polymerase Polθ, Cdk1, and Plk1, exhibited a step-wise increase and Mdc1 a decrease in expression in MmuPV1-infected tissues and MmuPV1 tumors relative to normal tissues. Increased expression of mitotic kinases CDK1 and PLK1 appears to be correlated with CtIP phosphorylation in MmuPV1 tumors, suggesting a role for MMEJ-mediated DNA joining in the MmuPV1 integration events that are associated with MmuPV1-induced progression of tumors.


Subject(s)
DNA End-Joining Repair , DNA Repair Enzymes/metabolism , DNA, Viral/genetics , Keratinocytes/metabolism , Papilloma/genetics , Papillomaviridae/genetics , Papillomavirus Infections/genetics , Animals , Animals, Newborn , DNA Breaks, Double-Stranded , DNA Repair Enzymes/genetics , Female , Genome, Viral , Homologous Recombination , Keratinocytes/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Papilloma/virology , Papillomavirus Infections/metabolism , Papillomavirus Infections/virology , RNA-Seq
12.
Cell Host Microbe ; 29(8): 1235-1248.e8, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34214492

ABSTRACT

The epidermis forms a barrier that defends the body from desiccation and entry of harmful substances, while also sensing and integrating environmental signals. The tightly orchestrated cellular changes needed for the formation and maintenance of this epidermal barrier occur in the context of the skin microbiome. Using germ-free mice, we demonstrate the microbiota is necessary for proper differentiation and repair of the epidermal barrier. These effects are mediated by microbiota signaling through the aryl hydrocarbon receptor (AHR) in keratinocytes, a xenobiotic receptor also implicated in epidermal differentiation. Mice lacking keratinocyte AHR are more susceptible to barrier damage and infection, during steady-state and epicutaneous sensitization. Colonization with a defined consortium of human skin isolates restored barrier competence in an AHR-dependent manner. We reveal a fundamental mechanism whereby the microbiota regulates skin barrier formation and repair, which has far-reaching implications for the numerous skin disorders characterized by epidermal barrier dysfunction.


Subject(s)
Microbiota/physiology , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction , Skin/microbiology , Animals , Basic Helix-Loop-Helix Transcription Factors , Cell Differentiation , Cell Line , Epidermal Cells/metabolism , Epidermal Cells/pathology , Epidermis/metabolism , Female , Humans , Keratinocytes , Male , Mice , Mice, Inbred C57BL , Skin/pathology , Skin Diseases/microbiology
13.
PLoS Pathog ; 16(1): e1008206, 2020 01.
Article in English | MEDLINE | ID: mdl-31968015

ABSTRACT

High-risk human papillomaviruses (HPVs) cause 5% of human cancers. Despite the availability of HPV vaccines, there remains a strong urgency to find ways to treat persistent HPV infections, as current HPV vaccines are not therapeutic for individuals already infected. We used a mouse papillomavirus infection model to characterize virus-host interactions. We found that mouse papillomavirus (MmuPV1) suppresses host immune responses via overexpression of stress keratins. In mice deficient for stress keratin K17 (K17KO), we observed rapid regression of papillomas dependent on T cells. Cellular genes involved in immune response were differentially expressed in the papillomas arising on the K17KO mice correlating with increased numbers of infiltrating CD8+ T cells and upregulation of IFNγ-related genes, including CXCL9 and CXCL10, prior to complete regression. Blocking the receptor for CXCL9/CXCL10 prevented early regression. Our data provide a novel mechanism by which papillomavirus-infected cells evade host immunity and defines new therapeutic targets for treating persistent papillomavirus infections.


Subject(s)
Keratin-17/immunology , Papillomaviridae/immunology , Papillomavirus Infections/immunology , Receptors, CXCR3/metabolism , T-Lymphocytes/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Female , Immunity/genetics , Interferon-gamma/biosynthesis , Keratin-17/genetics , Male , Mice , Mice, Knockout , Up-Regulation
14.
Virology ; 541: 1-12, 2020 02.
Article in English | MEDLINE | ID: mdl-31826841

ABSTRACT

The papillomavirus E5 gene contributes to transformation and tumorigenesis; however, its exact function in these processes and viral pathogenesis is unclear. While E5 is present in high-risk mucosotropic HPVs that cause anogenital and head and neck cancers, it is absent in cutaneous HPVs and the recently discovered mouse papillomavirus (MmuPV1), which causes papillomas and squamous cell carcinomas of the skin and mucosal epithelia in laboratory mice. We infected K14E5 transgenic mice, which express the high-risk mucosotropic HPV16 E5 gene in stratified epithelia, with MmuPV1 to investigate the effects of E5 on papillomavirus-induced pathogenesis. Skin lesions in MmuPV1-infected K14E5 mice had earlier onset, higher incidence, and reduced frequency of spontaneous regression compared to those in non-transgenic mice. K14E5 mice were also more susceptible to cervicovaginal cancers when infected with MmuPV1 and treated with estrogen compared to non-transgenic mice. Our studies support the hypothesis that E5 contributes to papillomavirus-induced pathogenesis.


Subject(s)
Carcinoma, Squamous Cell/virology , Oncogene Proteins, Viral/genetics , Papillomavirus Infections/etiology , Skin Neoplasms/virology , Animals , Carcinoma, Squamous Cell/etiology , Humans , Mice , Mice, Transgenic , Oncogene Proteins, Viral/physiology , Skin Neoplasms/etiology
15.
Cell Host Microbe ; 25(5): 641-655.e5, 2019 May 08.
Article in English | MEDLINE | ID: mdl-31006638

ABSTRACT

Chronic wounds are a major complication of diabetes associated with high morbidity and health care expenditures. To investigate the role of colonizing microbiota in diabetic wound healing, clinical outcomes, and response to interventions, we conducted a longitudinal, prospective study of patients with neuropathic diabetic foot ulcers (DFU). Metagenomic shotgun sequencing revealed that strain-level variation of Staphylococcus aureus and genetic signatures of biofilm formation were associated with poor outcomes. Cultured wound isolates of S. aureus elicited differential phenotypes in mouse models that corresponded with patient outcomes, while wound "bystanders" such as Corynebacterium striatum and Alcaligenes faecalis, typically considered commensals or contaminants, also significantly impacted wound severity and healing. Antibiotic resistance genes were widespread, and debridement, rather than antibiotic treatment, significantly shifted the DFU microbiota in patients with more favorable outcomes. These findings suggest that the DFU microbiota may be a marker for clinical outcomes and response to therapeutic interventions.


Subject(s)
Anti-Infective Agents/therapeutic use , Coinfection/microbiology , Debridement , Diabetic Foot/microbiology , Microbiota , Wound Infection/microbiology , Animals , Coinfection/therapy , Diabetic Foot/therapy , Disease Models, Animal , Longitudinal Studies , Mice , Prospective Studies , Treatment Outcome , Wound Healing , Wound Infection/therapy
16.
mBio ; 10(2)2019 03 05.
Article in English | MEDLINE | ID: mdl-30837335

ABSTRACT

Papillomaviruses exhibit species-specific tropism, thereby limiting understanding and research of several aspects of HPV infection and carcinogenesis. The discovery of a murine papillomavirus (MmuPV1) provides the opportunity to study papillomavirus infections in a tractable, in vivo laboratory model. MmuPV1 infects and causes disease in the cutaneous epithelium, as well as the mucosal epithelia of the oral cavity and anogenital tract. In this report, we describe a murine model of MmuPV1 infection and neoplastic disease in the female reproductive tracts of wild-type immunocompetent FVB mice. Low-grade dysplastic lesions developed in reproductive tracts of FVB mice infected with MmuPV1 for 4 months, and mice infected for 6 months developed significantly worse disease, including squamous cell carcinoma (SCC). We also tested the contribution of estrogen and/or UV radiation (UVR), two cofactors we previously identified as being involved in papillomavirus-mediated disease, to cervicovaginal disease. Similar to HPV16 transgenic mice, exogenous estrogen treatment induced high-grade precancerous lesions in the reproductive tracts of MmuPV1-infected mice by 4 months and together with MmuPV1 efficiently induced SCC by 6 months. UV radiation and exogenous estrogen cooperated to promote carcinogenesis in MmuPV1-infected mice. This murine infection model represents the first instance of de novo papillomavirus-mediated carcinogenesis in the female reproductive tract of wild-type mice resulting from active virus infection and is also the first report of the female hormone estrogen contributing to this process. This model will provide an additional platform for fundamental studies on papillomavirus infection, cervicovaginal disease, and the role of cellular cofactors during papillomavirus-induced carcinogenesis.IMPORTANCE Tractable and efficient models of papillomavirus-induced pathogenesis are limited due to the strict species-specific and tissue-specific tropism of these viruses. Here, we report a novel preclinical murine model of papillomavirus-induced cervicovaginal disease in wild-type, immunocompetent mice using the recently discovered murine papillomavirus, MmuPV1. In this model, MmuPV1 establishes persistent viral infections in the mucosal epithelia of the female reproductive tract, a necessary component needed to accurately mimic HPV-mediated neoplastic disease in humans. Persistent MmuPV1 infections were able to induce progressive neoplastic disease and carcinogenesis, either alone or in combination with previously identified cofactors of papillomavirus-induced disease. This new model will provide a much-needed platform for basic and translational studies on both papillomavirus infection and associated disease in immunocompetent mice.


Subject(s)
Disease Models, Animal , Genital Neoplasms, Female/pathology , Genital Neoplasms, Female/virology , Neoplasms/pathology , Neoplasms/virology , Papillomavirus Infections/pathology , Animals , Estrogens/administration & dosage , Female , Papillomavirus Infections/complications , Ultraviolet Rays
17.
J Invest Dermatol ; 139(4): 747-752.e1, 2019 04.
Article in English | MEDLINE | ID: mdl-30904077

ABSTRACT

Skin is colonized by microbial communities (microbiota) that participate in immune homeostasis, development and maintenance of barrier function, and protection from pathogens. The past decade has been marked by an increased interest in the skin microbiota and its role in cutaneous health and disease, in part due to advances in next-generation sequencing platforms that enable high-throughput, culture-independent detection of bacteria, fungi, and viruses. Various approaches, including bacterial 16S ribosomal RNA gene sequencing and metagenomic shotgun sequencing, have been applied to profile microbial communities colonizing healthy skin and diseased skin including atopic dermatitis, psoriasis, and acne, among others. Here, we provide an overview of culture-dependent and -independent approaches to profiling the skin microbiota and the types of questions that may be answered by each approach. We additionally highlight important study design considerations, selection of controls, interpretation of results, and limitations and challenges.


Subject(s)
Bacteria/genetics , Biomedical Research/methods , Dermatitis/genetics , High-Throughput Nucleotide Sequencing/methods , Metagenome/genetics , Microbiota/genetics , Skin/microbiology , Bacteria/isolation & purification , Dermatitis/microbiology , Dermatitis/pathology , Humans , Sequence Analysis, DNA , Skin/pathology
18.
Front Microbiol ; 9: 389, 2018.
Article in English | MEDLINE | ID: mdl-29568286

ABSTRACT

Infections with cutaneous papillomaviruses have been linked to cutaneous squamous cell carcinomas that arise in patients who suffer from a rare genetic disorder, epidermodysplasia verruciformis, or those who have experienced long-term, systemic immunosuppression following organ transplantation. The E6 proteins of the prototypical cutaneous human papillomavirus (HPV) 5 and HPV8 inhibit TGF-ß and NOTCH signaling. The Mus musculus papillomavirus 1, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinomas. MmuPV1 E6 shares biological and biochemical activities with HPV8 E6 including the ability to inhibit TGF-ß and NOTCH signaling by binding the SMAD2/SMAD3 and MAML1 transcription factors, respectively. Inhibition of TGF-ß and NOTCH signaling is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, the ability of MmuPV1 E6 to bind MAML1 is necessary for wart and cancer formation in experimentally infected mice. Hence, experimental MmuPV1 infection in mice will be a robust and valuable experimental system to dissect key aspects of cutaneous HPV infection, pathogenesis, and carcinogenesis.

19.
J Virol Methods ; 253: 11-17, 2018 03.
Article in English | MEDLINE | ID: mdl-29253496

ABSTRACT

Preclinical model systems to study multiple features of the papillomavirus life cycle are extremely valuable tools to aid our understanding of Human Papillomavirus (HPV) biology, disease progression and treatments. Mouse papillomavirus (MmuPV1) is the first ever rodent papillomavirus that can infect the laboratory strain of mice and was discovered recently in 2011. This model is an attractive model to study papillomavirus pathogenesis due to the ubiquitous availability of lab mice and the fact that this mouse species is easily genetically modifiable. Several other groups, including ours, have reported that MmuPV1-induced papillomas are restricted to T-cell deficient immunosuppressed mice. In our lab we showed for the first time that MmuPV1 causes skin cancers in UVB-irradiated immunocompetent animals. In this report we describe in detail the MmuPV1-UV infection model that can be adapted to study MmuPV1 biology in immunocompetent animals.


Subject(s)
Papillomaviridae/physiology , Papillomavirus Infections/virology , Animals , Disease Models, Animal , Mice , Papillomavirus Infections/diagnosis , Phenotype , Skin/pathology , Skin/virology , Time Factors , Viral Load
20.
Viruses ; 9(12)2017 11 27.
Article in English | MEDLINE | ID: mdl-29186900

ABSTRACT

Preclinical infection model systems are extremely valuable tools to aid in our understanding of Human Papillomavirus (HPV) biology, disease progression, prevention, and treatments. In this context, rodent papillomaviruses and their respective infection models are useful tools but remain underutilized resources in the field of papillomavirus biology. Two rodent papillomaviruses, MnPV1, which infects the Mastomys species of multimammate rats, and MmuPV1, which infects laboratory mice, are currently the most studied rodent PVs. Both of these viruses cause malignancy in the skin and can provide attractive infection models to study the lesser understood cutaneous papillomaviruses that have been frequently associated with HPV-related skin cancers. Of these, MmuPV1 is the first reported rodent papillomavirus that can naturally infect the laboratory strain of mice. MmuPV1 is an attractive model virus to study papillomavirus pathogenesis because of the ubiquitous availability of lab mice and the fact that this mouse species is genetically modifiable. In this review, we have summarized the knowledge we have gained about PV biology from the study of rodent papillomaviruses and point out the remaining gaps that can provide new research opportunities.


Subject(s)
Papillomaviridae/physiology , Papillomavirus Infections/virology , Animals , Cottontail rabbit papillomavirus/physiology , Disease Models, Animal , Humans , Mice , Murinae , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...