Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(3)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023840

ABSTRACT

The use of three-dimensional (3D) scaffolds is recognized worldwide as a valuable biomedical approach for promoting tissue regeneration in critical-size bone defects. Over the last 50 years, bioactive glasses have been intensively investigated in a wide range of different clinical applications, from orthopedics to soft tissue healing. Bioactive glasses exhibit the unique capability to chemically bond to the host tissue and, furthermore, their processing versatility makes them very appealing due to the availability of different manufacturing techniques for the production of porous and interconnected synthetic bone grafts able to support new tissue growth over the whole duration of the treatment. As a novel contribution to the broad field of scaffold manufacturing, we report here an effective and relatively easy method to produce silicate glass-derived scaffolds by using, for the first time in the biomedical field, dolomite powder as a foaming agent for the formation of 3D bone-like porous structures. Morphological/structural features, crystallization behavior, and in vitro bioactivity in a simulated body fluid (SBF) were investigated. All the tested scaffolds were found to fulfil the minimum requirements that a scaffold for osseous repair should exhibit, including porosity (65-83 vol.%) and compressive strength (1.3-3.9 MPa) comparable to those of cancellous bone, as well as hydroxyapatite-forming ability (bioactivity). This study proves the suitability of a dolomite-foaming method for the production of potentially suitable bone grafts based on bioactive glass systems.

2.
J Forensic Sci ; 51(3): 520-31, 2006 May.
Article in English | MEDLINE | ID: mdl-16696699

ABSTRACT

Evidence of exposure of a metal component to a small charge explosion can be detected by observing microstructural modifications; they may be present even if the piece does not show noticeable overall plastic deformations. Particularly, if an austenitic stainless steel (or another metal having a face-centered cubic structure and a low stacking fault energy) is exposed to an explosive shock wave, high-speed deformation induces primarily mechanical twinning, whereas, in nonexplosive events, a lower velocity plastic deformation first induces slip. The occurrence of mechanical twins can be detected even if the surface is damaged or oxidized in successive events. In the present research, optical metallography (OM) and scanning electron microscopy (SEM), and scanning tunneling microscopy (STM) were used to detect microstructural modifications caused on AISI 304Cu steel disks by small-charge explosions. Spherical charges of 54.5 or 109 g TNT equivalent mass were used at explosive-to-target distances from 6.5 to 81.5 cm, achieving peak pressures from 160 to 0.5 MPa. Explosions induced limited or no macro-deformation. Two alloy grain sizes were tested. Surface OM and SEM evidenced partial surface melting, zones with recrystallization phenomena, and intense mechanical twinning, which was also detected by STM and X-ray diffraction. In the samples' interior, only twins were seen, up to some distance from the explosion impinged surface and again, at the shortest charge-to-sample distances, in a thin layer around the reflecting surface. For forensic science locating purposes after explosions, the maximum charge-to-target distance at which the phenomena disappear was singled out for each charge or grain size and related to the critical resolved shear stress for twinning.

SELECTION OF CITATIONS
SEARCH DETAIL
...