Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
2.
Heliyon ; 9(1): e13007, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36747952

ABSTRACT

With population growth and dwindling freshwater sources, protecting such sources has come to the forefront of water resource management. Historically, society's response to a problem is based on funding availability, current threat, and public outcry. Achieving this is largely dependent on the knowledge of the factors that are resulting in compromised water sources. These factors are constantly changing as novel contaminants are introduced into surface water sources. As we are in the information age, the interest in contaminants of emerging concern (CEC) is gaining ground. Whilst research is being conducted to identify contaminants in South African water sources, the research outputs and available information is not collated and presented to the science community and stakeholders in readily available formats and platforms. Current research outcomes need to be made known to regulators in order to develop environmental laws. By using fourth industrial revolution technology, we were able to collate available data in literature and display these in a user-friendly online format to regulatory bodies as well as researchers. A standardized excel spreadsheet was developed and uploaded to a PostgreSQL, running a PostGIS extension and was then processed in the GeoServer to allow for visualization on an interactive map which can be continuously updated. The near real-time access to information will reduce the possibility of duplication of research efforts, enhance collaboration in the discipline, and act as a CEC early warning system.

3.
Sci Total Environ ; 835: 155473, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35469872

ABSTRACT

The recent COVID-19 disease has highlighted the need for further research around the risk to human health and the environment because of mass burial of COVID-19 victims. Despite SARS-CoV-2 being an enveloped virus, which is highly susceptible to environmental conditions (temperature, solar/UV exposure). This review provides insight into the potential of SARS-CoV-2 to contaminate groundwater through burial sites, the impact of various types of burial practices on SARS-CoV-2 survival, and current knowledge gaps that need to be addressed to ensure that humans and ecosystems are adequately protected from SARS-CoV-2. Data available shows temperature is still likely to be the driving factor when it comes to survival and infectivity of SARS-CoV-2. Research conducted at cemetery sites globally using various bacteriophages (MS2, PRD1, faecal coliforms) and viruses (TGEV, MHV) as surrogates for pathogenic enteric viruses to study the fate and transport of these viruses showed considerable contamination of groundwater, particularly where there is a shallow vadose zone and heterogeneous structures are known to exist with very low residence times. In addition, changes in solution chemistry (e.g., decrease in ionic strength or increase in pH) during rainfall events produces large pulses of released colloids that can result in attached viruses becoming remobilised, with implications for groundwater contamination. Viruses cannot spread unaided through the vadose zone. Since groundwater is too deep to be in contact with the interred body and migration rates are very slow, except where preferential flow paths are known to exist, the groundwater table will not be significantly impacted by contamination from SARS-CoV-2. When burial takes place using scientifically defensible methods the possibility of infection will be highly improbable. Furthermore, the SARS-CoV-2 pandemic has helped us to prepare for other eventualities such as natural disasters where mass fatalities and subsequently burials may take place in a relatively short space of time.


Subject(s)
COVID-19 , Groundwater , Viruses , Burial , Ecosystem , Humans , SARS-CoV-2
4.
J Water Health ; 18(4): 494-504, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32833676

ABSTRACT

Solar disinfection (SODIS) has been shown to reduce the risk associated with the contraction of water borne diseases such as cholera. However, little or no research has been undertaken in exploring the role played by the immune system following the consumption of solar inactivated water pathogens. This study investigated the potential for solar inactivated Vibrio cholerae to induce the maturation of dendritic cells in vitro. Dendritic cells are professional antigen presenting cells found in mammals. However, only in their mature form are dendritic cells able to play their role towards a long lasting immune response. Three strains of V. cholerae were solar irradiated for 7 hours. Thereafter, the solar irradiated, non-solar irradiated, phosphate buffered saline prepared and heat/chemically inactivated cultures of V. cholerae as well as lipopolysaccharide and cholerae toxin-ß subunit were used to stimulate immature dendritic cells. After 48 hours, the dendritic cells were assessed for the expression of CD54, CD80, CD83, CD86, MHC-I and MHC-II cell surface markers. Results show that solar inactivated V. cholerae was able to induce maturation of the dendritic cells in vitro. These findings suggest that there may be an immunological benefit in consuming SODIS treated water.


Subject(s)
Cholera , Dendritic Cells , Sunlight , Vibrio cholerae , Animals , Antibodies, Bacterial , Cell Line
5.
Pathogens ; 9(3)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155961

ABSTRACT

Routine diagnostic methods for the aetiologic agents of diarrhoea in most developing countries are usually not sensitive enough, leading to under-diagnosis. Thus, this study investigated possible mixed diarrhoeal aetiology by using cultures and real-time polymerase chain reactions (PCR) in children younger than four years old in the Northwest Province, South Africa. In total, 505 stool samples were collected from symptomatic and asymptomatic children who were attending three clinics and the Brits hospital in Madibeng District, between September 2016 and December 2017. Rotavirus, norovirus, Campylobacter, Arcobacter, and diarrhoeagenic Escherichia coli (DEC) were targeted. Campylobacter spp. (24.6%), Arcobacter (15.8%) and DEC (19.6%) were detected using PCR; only Campylobacter spp. (29.7%) and DEC (26.9%) were detected through the culture. Campylobacter jejuni (36%), Campylobacter coli (28%), Campylobacter upsalensis (12%), and Arcobacter butzleri (15.8%) were the only spp. of Campylobacter and Arcobacter identified. The eaeA gene (31.4%) of enteropathogenic E. coli/enterohaemorrhagic E. coli (EPEC/EHEC) was the most prevalent DEC virulence gene (VG) identified. Rotavirus and norovirus were detected at 23.4% and 20%, respectively. Mixed viral aetiology (7.3%) and the co-infection of A. butzleri and Campylobacter (49%) were recorded. A mixed bacterial-viral aetiology was observed in 0.6% of the specimens. Sensitive diagnostic procedures like PCR should be considered to provide the best treatment to children experiencing diarrhoea.

6.
Iran J Public Health ; 48(5): 849-857, 2019 May.
Article in English | MEDLINE | ID: mdl-31523641

ABSTRACT

BACKGROUND: Fomites (including money) can transmit diseases to humans. How the nature of money influences contamination has not been adequately demonstrated. Moreover, such studies in church settings are non-existent. Thus, we studied how money collected from a church could serve as human disease transmission vehicles. METHODS: Overall, 284 money samples (currency notes and coins) were collected during two Sundays in the months of Nov and Dec 2015 from a church congregation in Pretoria, Gauteng, South Africa. The presence of potentially pathogenic bacteria and fungi were investigated using culture (Colilert® method) and molecular methods (Sanger sequencing). Scanning Electron Microscopy (SEM) was used to visualize the possible positions of the bacteria on various parts of a currency note. RESULTS: Of the 192 samples (first sampling round), 76 (39.6%) were positive for E. coli. Smaller notes (R10) recorded the highest E. coli counts per note. Of the 92 notes analyzed for potentially pathogenic bacteria and fungi (second sampling round), 76 (82%) showed growth on at least one of the six culture media used. Sequencing revealed three bacterial (Bacillus, Staphylococcus and Corynebacterium) and two fungal (Clavispora and Rhodotorula) genera. SEM revealed that microorganisms could enter cracks of creased notes. CONCLUSION: Unlike previous studies conducted where recent contamination could occur, the current study shows that microorganisms can survive on money; samples were collected from a church, where little or no exchange takes place. Moreover, using SEM demonstrates that aged and creased notes favor attachment of bacteria to money and could be of public health concern by transmitting disease within a given population.

7.
Article in English | MEDLINE | ID: mdl-31234440

ABSTRACT

Antibiotic-resistant Campylobacter could adversely affect treatment outcomes, especially in children. We investigated the antibiotic susceptibility profiles, virulence potentials and genetic relatedness of Campylobacter spp. from paediatric and water samples in the North West Province, South Africa. Overall, 237 human and 20 water isolates were identified using culture and real-time polymerase chain reaction (PCR). The antibiotic susceptibility profiles were determined using the disk diffusion method. Gradient strips were used to determine the minimum inhibitory concentration of each antibiotic. Antibiotic resistance (gryA, tetO and 23S rRNA 2075G and 2074C) and virulence (cadF and ciaB) genes were also investigated using PCR. A phylogenetic tree to ascertain the clonality between water and clinical isolates was constructed using MEGA 7. Overall, 95% (water) and 64.7% (human) of the isolates were resistant to at least one antibiotic tested. The highest resistance was against clarithromycin (95%) for water and ampicillin (60.7%) for human isolates. The 23S rRNA 2075G/2074C mutation was the most expressed resistance gene. Phylogenetic reconstruction revealed eight intermixed clades within water and human Campylobacter isolates. This study suggests the possible circulation of potentially pathogenic antibiotic-resistant Campylobacter in the Northwest Province, South Africa with drinking water being a possible vector for disease transmission in this area.


Subject(s)
Campylobacter Infections/epidemiology , Campylobacter/physiology , Drinking Water/microbiology , Drug Resistance, Bacterial/genetics , Feces/microbiology , Campylobacter/genetics , Campylobacter/pathogenicity , Child, Preschool , Drug Resistance, Multiple, Bacterial/genetics , Female , Genotype , Humans , Infant , Infant, Newborn , Male , Microbial Sensitivity Tests , Phenotype , Phylogeny , Prevalence , South Africa/epidemiology , Species Specificity , Virulence
8.
Environ Pollut ; 249: 696-702, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30933767

ABSTRACT

Antibiotic resistance (AR) in the environment is a growing and global concern for public health, and intrinsic AR from pristine sites untouched by pharmaceutical antibiotics is not commonly studied. Forty aerobic bacteria were isolated from water and sediment samples of hot springs in South Africa. Resistance against ten antibiotics (carbenicillin, gentamicin, kanamycin, streptomycin, tetracycline, chloramphenicol, ceftriaxone, co-trimoxazole, nalidixic acid and norfloxacin) was tested using a standard disk diffusion assay. Resistance to one or two antibiotics were equally found in 37.5%, while the remaining 22% showed complete sensitivity. Intermediate resistance was found for ceftriaxone (52.5%), nalidixic acid (37.5%) and carbenicillin (22.5%), while low levels of resistance were observed for streptomycin (5%) and kanamycin (2.5%), and total sensitivity towards the other antibiotics. Twenty-nine isolates were also tested against eight different heavy-metal salts (Al, Cr, Cu, Fe, Hg, Mn, Ni and Pb) at 10 and 40 mM. All isolates were tolerant and able to grow on ≥2 heavy-metal salts at both concentrations. No association was observed between AR and heavy metal tolerance (HMT). Based on the relatively low AR levels, hot spring sites are pristine environments reflecting baseline levels for comparison to other potentially contaminated groundwater sites.


Subject(s)
Anti-Bacterial Agents/analysis , Bacillaceae/drug effects , Drug Resistance, Microbial/drug effects , Hot Springs/chemistry , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Anti-Bacterial Agents/toxicity , Bacillaceae/isolation & purification , DNA, Bacterial/genetics , Dose-Response Relationship, Drug , Drug Tolerance , Groundwater/chemistry , Groundwater/microbiology , Hot Springs/microbiology , Metals, Heavy/toxicity , Microbial Sensitivity Tests , South Africa , Water Pollutants, Chemical/toxicity
9.
Sci Total Environ ; 655: 831-841, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30481710

ABSTRACT

Recent studies have identified cemeteries as potential environmental reservoirs of multi-drug resistant pathogenic bacteria that could contaminate groundwater sources posing public health threats. However, these findings were based on the identification of culturable bacteria and at times not below burial grounds. Investigation on the bacterial diversity and functional profiles of bacterial communities above and below burial grounds in human cemeteries are few. The current study used high-throughput sequencing techniques to determine the bacterial composition and their associated functional profiles in cemetery soil samples collected at the surface and below burial ground in two South African cemeteries (Maitland Cemetery in Cape Town and Fontein Street Cemetery in Middelburg) to evaluate the potential health threat to surrounding populations through contamination of groundwater. Significant differences were observed between sample depths with the clustering of the surface (0 m) and the 2 m samples into separate groups. Pseudomonas and Corynebacterium were the most abundant genera across all samples. Pseudomonas and Rhodococcus were the dominant genera in the 2 m samples while Prauserella and Staphylococcus were dominant in the surface samples. The 2 m samples showed a lower alpha diversity but recorded higher proportions of human diseases functional classes compared to the surface samples. Human disease functional profiles revealed involvement, in infectious (cholera), neurodegenerative (Alzheimer's disease) cardiovascular (hypertrophic cardiomyopathy) immune system (Systemic lupus erythematosus) metabolic (Type I & II diabetes) diseases and cancer. Antibiotic resistance and antibiotics synthesis signatures were also identified. Thus, cemeteries could be potential sources of microbial and antibiotic pollution in groundwater, especially in areas with shallow water tables such as Maitland. Selection of sites for use as cemeteries should, therefore, require a proper understanding of the hydrogeological characteristics of the selected site. However, further studies are required to trace the actual movement of these pollutants into groundwater resources.


Subject(s)
Cemeteries , Environmental Monitoring , Metagenomics , Soil Microbiology , Biodiversity , Cities , Humans , Microbiota/genetics , Molecular Sequence Annotation , RNA, Ribosomal, 16S/genetics , South Africa
10.
Antibiotics (Basel) ; 7(3)2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30110918

ABSTRACT

Human burial in cemeteries facilitates the decomposition of corpses without posing a public health danger. However, the role of cemeteries as potential environmental reservoirs of drug-resistant pathogens has not been studied. Thus, we investigated cemeteries as potential environmental reservoirs of multi-drug resistant (MDR) pathogenic Escherichia coli. E. coli isolates were obtained from water samples (collected from surface water bodies and boreholes in three cemeteries) after isolation using the Colilert® 18 system. Pathogenic potentials of the isolates were investigated using real-time polymerase chain reactions targeting seven virulence genes (VGs) pertaining to six E. coli pathotypes. The resistance of isolates to eight antibiotics was tested using the Kirby⁻Bauer disc diffusion method. The mean E. coli concentrations varied from <1 most probable number (MPN)/100 mL to 2419.6 MPN/100 mL with 48% of 100 isolates being positive for at least one of the VGs tested. Furthermore, 87% of the isolates were resistant to at least one of the antibiotics tested, while 72% of the isolates displayed multi-drug resistance. Half of the MDR isolates harboured a VG. These results suggest that cemeteries are potential reservoirs of MDR pathogenic E. coli, originating from surrounding informal settlements, which could contaminate groundwater if the cemeteries are in areas with shallow aquifers.

11.
Article in English | MEDLINE | ID: mdl-29723970

ABSTRACT

Although many developing countries use harvested rainwater (HRW) for drinking and other household purposes, its quality is seldom monitored. Continuous assessment of the microbial quality of HRW would ensure the safety of users of such water. The current study investigated the prevalence of pathogenic Escherichia coli strains and their antimicrobial resistance patterns in HRW tanks in the Eastern Cape, South Africa. Rainwater samples were collected weekly between June and September 2016 from 11 tanks in various areas of the province. Enumeration of E. coli was performed using the Colilert®18/Quanti-Tray® 2000 method. E. coli isolates were obtained and screened for their virulence potentials using polymerase chain reaction (PCR), and subsequently tested for antibiotic resistance using the disc-diffusion method against 11 antibiotics. The pathotype most detected was the neonatal meningitis E. coli (NMEC) (ibeA 28%) while pathotype enteroaggregative E. coli (EAEC) was not detected. The highest resistance of the E. coli isolates was observed against Cephalothin (76%). All tested pathotypes were susceptible to Gentamicin, and 52% demonstrated multiple-antibiotic resistance (MAR). The results of the current study are of public health concern since the use of untreated harvested rainwater for potable purposes may pose a risk of transmission of pathogenic and antimicrobial-resistant E. coli.


Subject(s)
Drug Resistance, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Rain , Polymerase Chain Reaction , Public Health , South Africa , Virulence
12.
Sci Total Environ ; 616-617: 326-334, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29126050

ABSTRACT

Water quality is an important public health issue given that the presence of pathogenic organisms in such waters can adversely affect human and animal health. Despite the numerous studies conducted to assess the quality of environmental waters in many countries, limited efforts have been put on investigating the microbial quality of the sediments in developing countries and how this relates to different land uses. The present study evaluated the bacterial diversity in water and sediments in a highly used South African river to find out how the different land uses influenced the bacterial diversity, and to verify the human diseases functional classes of the bacterial populations. Samples were collected on river stretches influenced by an informal, a peri-urban and a rural settlement. Genomic DNA was extracted from water and sediment samples and sequenced on an Illumina® MiSeq platform targeting the 16S rRNA gene variable region V3-V4 from the genomic DNA. Metagenomic data analysis revealed that there was a great diversity in the microbial populations associated with the different land uses, with the informal settlement having the most considerable influence on the bacterial diversity in the water and sediments of the Apies River. The Proteobacteria (69.8%), Cyanobacteria (4.3%), Bacteroidetes (2.7%), and Actinobacteria (2.7%) were the most abundant phyla; the Alphaproteobacteria, Betaproteobacteria and Anaerolineae were the most recorded classes. Also, the sediments had a greater diversity and abundance in bacterial population than the water column. The functional profiles of the bacterial populations revealed an association with many human diseases including cancer pathways. Further studies that would isolate these potentially pathogenic organisms in the aquatic environment are therefore needed as this would help in protecting the lives of communities using such rivers, especially against emerging bacterial pathogens.


Subject(s)
Geologic Sediments/microbiology , Metagenomics , Rivers/microbiology , Water Microbiology , Bacteria/classification , Biodiversity , DNA, Bacterial/isolation & purification , RNA, Ribosomal, 16S , South Africa
13.
Article in English | MEDLINE | ID: mdl-28914802

ABSTRACT

Hot spring water may harbour emerging waterborne opportunistic pathogens that can cause infections in humans. We have investigated the diversity and antimicrobial resistance of culturable emerging and opportunistic bacterial pathogens, in water and sediment of hot springs located in Limpopo, South Africa. Aerobic bacteria were cultured and identified using 16S ribosomal DNA (rDNA) gene sequencing. The presence of Legionella spp. was investigated using real-time polymerase chain reaction. Isolates were tested for resistance to ten antibiotics representing six different classes: ß-lactam (carbenicillin), aminoglycosides (gentamycin, kanamycin, streptomycin), tetracycline, amphenicols (chloramphenicol, ceftriaxone), sulphonamides (co-trimoxazole) and quinolones (nalidixic acid, norfloxacin). Gram-positive Kocuria sp. and Arthrobacter sp. and gram-negative Cupriavidus sp., Ralstonia sp., Cronobacter sp., Tepidimonas sp., Hafnia sp. and Sphingomonas sp. were isolated, all recognised as emerging food-borne pathogens. Legionella spp. was not detected throughout the study. Isolates of Kocuria, Arthrobacter and Hafnia and an unknown species of the class Gammaproteobacteria were resistant to two antibiotics in different combinations of carbenicillin, ceftriaxone, nalidixic acid and chloramphenicol. Cronobacter sp. was sensitive to all ten antibiotics. This study suggests that hot springs are potential reservoirs for emerging opportunistic pathogens, including multiple antibiotic resistant strains, and highlights the presence of unknown populations of emerging and potential waterborne opportunistic pathogens in the environment.


Subject(s)
Actinobacteria , Hot Springs/microbiology , Proteobacteria , Water Pollutants/analysis , Actinobacteria/drug effects , Actinobacteria/genetics , Actinobacteria/isolation & purification , Anti-Bacterial Agents/pharmacology , DNA, Ribosomal/analysis , Drug Resistance, Bacterial , Environmental Monitoring , Geologic Sediments/microbiology , Phylogeny , Proteobacteria/drug effects , Proteobacteria/genetics , Proteobacteria/isolation & purification , South Africa
14.
J Environ Public Health ; 2017: 5646480, 2017.
Article in English | MEDLINE | ID: mdl-28642796

ABSTRACT

Africa remains the most cholera stricken continent in the world as many people lacking access to safe drinking water rely mostly on polluted rivers as their main water sources. However, studies in these countries investigating the presence of Vibrio cholerae in aquatic environments have paid little attention to bed sediments. Also, information on the presence of virulence-associated genes (VAGs) in environmental ctx-negative V. cholerae strains in this region is lacking. Thus, we investigated the presence of V. cholerae VAGs in water and riverbed sediment of the Apies River, South Africa. Altogether, 120 samples (60 water and 60 sediment samples) collected from ten sites on the river (January and February 2014) were analysed using PCR. Of the 120 samples, 37 sediment and 31 water samples were positive for at least one of the genes investigated. The haemolysin gene (hlyA) was the most isolated gene. The cholera toxin (ctxAB) and non-O1 heat-stable (stn/sto) genes were not detected. Genes were frequently detected at sites influenced by human activities. Thus, identification of V. cholerae VAGs in sediments suggests the possible presence of V. cholerae and identifies sediments of the Apies River as a reservoir for potentially pathogenic V. cholerae with possible public health implications.


Subject(s)
Cholera/epidemiology , Genes, Bacterial , Geologic Sediments/microbiology , Rivers/microbiology , Vibrio cholerae/isolation & purification , Virulence Factors/isolation & purification , Cholera/transmission , Disease Outbreaks/prevention & control , Disease Reservoirs/microbiology , Humans , South Africa/epidemiology , Vibrio cholerae/genetics , Virulence Factors/genetics
15.
Article in English | MEDLINE | ID: mdl-28335539

ABSTRACT

In the absence of pipe-borne water, many people in Africa, especially in rural communities, depend on alternative water sources such as wells, boreholes and rivers for household and personal hygiene. Poor maintenance and nearby pit latrines, however, lead to microbial pollution of these sources. We evaluated the abundance of Escherichia coli and the prevalence of pathogenic E. coli virulence genes in water from wells, boreholes and a river in a South African peri-urban community. Monthly samples were collected between August 2015 and November 2016. In all, 144 water samples were analysed for E. coli using the Colilert 18 system. Virulence genes (eagg, eaeA, stx1, stx2, flichH7, ST, ipaH, ibeA) were investigated using real-time polymerase chain reaction. Mean E. coli counts ranged between 0 and 443.1 Most Probable Number (MPN)/100 mL of water sample. Overall, 99.3% of samples were positive for at least one virulence gene studied, with flicH7 being the most detected gene (81/140; 57.6%) and the stx2 gene the least detected gene (8/140; 5.7%). Both intestinal and extraintestinal pathogenic E. coli genes were detected. The detection of virulence genes in these water sources suggests the presence of potentially pathogenic E. coli strains and is a public health concern.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/isolation & purification , Virulence Factors/genetics , Water Microbiology , Water Quality , Environmental Monitoring , Escherichia coli/genetics , Escherichia coli/pathogenicity , Genetic Markers , Humans , Rivers/microbiology , South Africa , Urban Health , Water Wells
16.
Article in English | MEDLINE | ID: mdl-28295001

ABSTRACT

Resuspension of sediment-borne microorganisms (including pathogens) into the water column could increase the health risk for those using river water for different purposes. In the present work, we (1) investigated the effect of sediment disturbance on microbial resuspension from riverbed sediments in laboratory flow-chambers and in the Apies River, Gauteng, South Africa; and (2) estimated flow conditions for sediment-borne microorganism entrainment/resuspension in the river. For mechanical disturbance, the top 2 cm of the sediment in flow-chambers was manually stirred. Simulating sudden discharge into the river, water (3 L) was poured within 30 s into the chambers at a 45° angle to the chamber width. In the field, sediment was disturbed by raking the riverbed and by cows crossing in the river. Water samples before and after sediment disturbance were analysed for Escherichia coli. Sediment disturbance caused an increase in water E. coli counts by up to 7.9-35.8 times original values. Using Shields criterion, river-flow of 0.15-0.69 m³/s could cause bed particle entrainment; while ~1.57-7.23 m³/s would cause resuspension. Thus, sediment disturbance in the Apies River would resuspend E. coli (and pathogens), with possible negative health implications for communities using such water. Therefore, monitoring surface water bodies should include microbial sediment quality.


Subject(s)
Developing Countries , Escherichia coli/isolation & purification , Geologic Sediments/microbiology , Public Health , Rivers/microbiology , Water Resources , Africa South of the Sahara , Environmental Monitoring , Humans , South Africa
17.
AMB Express ; 7(1): 20, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28063147

ABSTRACT

To date, the microbiological quality of river sediments and its impact on water resources are not included in the water quality monitoring assessment. Therefore, the aim of this study was to establish genetic relatedness between faecal coliforms and enterococci isolated from the river water and riverbed sediments of Apies River to better understand the genetic similarity of microorganisms between the sediment and water phases. Indicator bacteria were subjected to a molecular study, which consisted of PCR amplification and sequence analysis of the 16S rRNA and 23S rRNA gene using specific primers for faecal coliforms and enterococci, respectively. Results revealed that the Apies River had high faecal pollution levels with enterococci showing low to moderate correlation coefficient (r2 values ranged from 0.2605 to 0.7499) compared to the faecal coliforms which showed zero to low correlation (r2 values ranged from 0.0027 to 0.1407) indicating that enterococci may be better indicator than faecal coliforms for detecting faecal contamination in riverbed sediments. The phylogenetic tree of faecal coliforms revealed a 98% homology among their nucleotide sequences confirming the close genetic relatedness between river water and riverbed sediment isolates. The phylogenetic tree of the enterococci showed that Enterococcus faecalis and Enterococcus faecium are the predominant species found in both river water and riverbed sediments with bootstrap values of ≥99%. A high degree of genetic relatedness between sediment and water isolates indicated a possible common ancestry and transmission pathway. We recommend the microbial monitoring of riverbed sediments as it harbours more diverse microbial community and once resuspended may cause health and environmental problems.

18.
Sci Total Environ ; 566-567: 1143-1151, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27297265

ABSTRACT

Although higher microbial concentrations have been reported in sediments than in the overlying water column, most quantitative microbial risk assessment (QMRA) studies have not clearly indicated the contribution of sediment-borne pathogens to estimated risks. Thus, the present study aimed at determining the public health risk associated with exposure to pathogenic bacteria in polluted river water under undisturbed conditions and conditions of sediment resuspension in the Apies River, Gauteng, South Africa. Microbial pathogens were isolated and identified using culture and molecular methods. The beta-Poisson dose-response model was used to estimate the probability of infection (Pi) with the various pathogens, following accidental/intentional ingestion of 1mL or 100mL (or 50mL) of untreated river water. Mean wet season Escherichia coli counts ranged between 5.8E+01 and 8.8E+04MPN/100mL (water column) and between 2.40E+03 and 1.28E+05MPN/100mL (sediments). Mean dry season E. coli counts ranged between 5.11E+00 and 3.40E+03MPN/100mL (water column) and between 5.09E+00 and 6.30E+03MPN/100mL (sediments). Overall (water and sediments) Vibrio cholerae was the most detected pathogen (58.8%) followed by Salmonella spp. (23.9%) and Shigella (10.1%). Ingestion of 1mL of river water could lead to 0%-4% and 1%-74% Pi with E. coli during the dry and wet season, respectively. During the dry season, the Pi with V. cholerae, Salmonella spp. and Shigella spp. were 0%-1.39%, 0%-4.11% and 0%-0.16% respectively, depending on volume of water ingested. The risks of infections with all microorganisms increased during the wet season. A 2-log increase in water E. coli count following sediments disturbance led to approximately 10 times higher Pi with E. coli than when sediments were undisturbed. Therefore, the use of the untreated water from the Apies River for drinking, household purposes or recreational activities poses a potential health risk to the users of the river.


Subject(s)
Bacteria/isolation & purification , Public Health , Risk Assessment , Rivers/microbiology , Bacteria/classification , Geologic Sediments/analysis , Seasons , South Africa
19.
Environ Sci Pollut Res Int ; 23(15): 15665-74, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27137190

ABSTRACT

In most developing countries, especially in Southern Africa, little is known about the presence of diarrhoeagenic Escherichia coli (DEC) pathotypes in riverbed sediments. The present study sought to investigate the presence of DEC virulence genes in riverbed sediments of the Apies River, a river used by many communities in Gauteng, South Africa. Water and sediment samples were collected from the river between July and August 2013 (dry season) and also between January and February 2014 (wet season) following standard procedures. Isolation of E. coli was done using the Colilert®-18 Quanti-Tray® 2000 system. DNA was extracted from E. coli isolates using the InstaGene™ matrix from Bio-Rad and used as template DNA for real-time PCR. Water pH, temperature, dissolved oxygen, electrical conductivity and turbidity were measured in situ. Over 59 % of 180 samples analysed were positive for at least one of the seven DEC virulence genes investigated. The eaeA gene was the most isolated gene (29.44 %) while the ipaH gene the least isolated (8.33 %). The ipaH gene (p = 0.012) and the ST gene (stIa, p = 0.0001, and stIb, p = 0.019) were positively correlated with temperature. The detection of diarrhoeagenic E. coli virulence genes in the sediments of the Apies River shows that the sediments of this river might not only be a reservoir of faecal indicator bacteria like E. coli but also pathogenic strains of this bacterium. These organisms could represent a public health risk for poor communities relying on this water source for various purposes such as drinking and recreational use. There is therefore an urgent need to monitor these DEC pathotypes especially in areas without adequate water supplies.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/isolation & purification , Geologic Sediments/microbiology , Rivers/microbiology , Virulence Factors/genetics , Escherichia coli/genetics , Escherichia coli/pathogenicity , Seasons , South Africa , Virulence , Water
20.
Microb Ecol ; 72(4): 881-889, 2016 11.
Article in English | MEDLINE | ID: mdl-27193001

ABSTRACT

Studies on the survival of bacterial enteric pathogens in riverbed sediments have mostly focused on individual organisms. Reports on the competitive survival of these pathogens in riverbed sediments under the same experimental setup are limited. We investigated the survival of Escherichia coli, Salmonella enterica ser. Typhimurium, Vibrio cholerae and Shigella dysenteriae in riverbed sediments of the Apies River. Experiments were performed in flow chambers containing three sediment types and connected to aquarium pumps immersed in river water to maintain continuous water circulation. Each chamber was inoculated with ~107 CFU/mL (final concentration) of each microorganism and kept at 4, 20 and 30 °C. Chambers were sampled on days 0, 1, 2, 7, 14 and 28. At 4 °C, only E. coli and S. typhimurium survived throughout the 28 experimental days. V. cholerae had the shortest survival time at this temperature and was not detected in any of the sediment chambers 24 h after inoculation. S. dysenteriae only survived until day 7. At an increased temperature of 20 °C, only S. dysenteriae was not detected on day 28 of the experiment. At 30 °C, V. cholerae and Salmonella survived longer (28 days) than E. coli (14 days) and S. dysenteriae (4 days). Vibrio cholerae was shown to have the highest T 90 values (32 days) in all sediment types at 20 and 30 °C. We conclude that the sediments of the Apies River present a favourable environment for the survival of indicator and pathogenic bacteria depending on the prevailing temperature.


Subject(s)
Escherichia coli/isolation & purification , Geologic Sediments/microbiology , Rivers/microbiology , Salmonella typhimurium/isolation & purification , Shigella dysenteriae/isolation & purification , Vibrio cholerae/isolation & purification , Temperature , Water Microbiology , Water Pollution
SELECTION OF CITATIONS
SEARCH DETAIL
...