Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Radiol ; 56(12): 837-844, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34038063

ABSTRACT

OBJECTIVES: Reports on gadolinium (Gd) retention in soft tissues after administration of Gd-based contrast agents (GBCAs) raise concerns about Gd-induced changes in the biophysical properties of cells and tissues. Here, we investigate if clinical GBCAs of both classes of linear and macrocyclic structure cause changes in the mechanical properties of leukocytes in human blood samples. MATERIAL AND METHODS: Real-time deformability cytometry was applied to human blood samples from 6 donors. The samples were treated with 1 mM gadoteric acid (Dotarem), gadopentetic acid (Magnevist), gadobutrol (Gadovist), or Gd trichloride at 37°C for 1 hour to mimic clinical doses of GBCAs and exposure times. Leukocyte subtypes-lymphocytes, monocytes, and neutrophils-were identified based on their size and brightness and analyzed for deformability, which is inversely correlated with cellular stiffness. RESULTS: We observed significant stiffening (3%-13%, P < 0.01) of all investigated leukocyte subtypes, which was most pronounced for lymphocytes, followed by neutrophils and monocytes, and the effects were independent of the charge and steric structure of the GBCA applied. In contrast, no changes in cell size and brightness were observed, suggesting that deformability and cell stiffness measured by real-time deformability cytometry are sensitive to changes in the physical phenotypes of leukocytes after GBCA exposure. CONCLUSIONS: Real-time deformability cytometry might provide a quantitative blood marker for critical changes in the physical properties of blood cells in patients undergoing GBCA-enhanced magnetic resonance imaging.


Subject(s)
Contrast Media , Organometallic Compounds , Contrast Media/chemistry , Gadolinium/chemistry , Gadolinium/pharmacology , Gadolinium DTPA , Humans , Leukocytes , Magnetic Resonance Imaging/methods
2.
Mol Imaging Biol ; 23(3): 382-393, 2021 06.
Article in English | MEDLINE | ID: mdl-33289060

ABSTRACT

PURPOSE: Contrast-enhanced magnetic resonance imaging (MRI) has the potential to replace angiographic evaluation of atherosclerosis. While studies have investigated contrast agent (CA) uptake in atherosclerotic plaques, exact CA spatial distribution on a microscale is elusive. The purpose of this study was to investigate the microdistribution of gadolinium (Gd)- and iron (Fe) oxide-based CA in atherosclerotic plaques of New Zealand White rabbits. PROCEDURES: The study was performed as a post hoc analysis of archived tissue specimens obtained in a previous in vivo MRI study conducted to investigate signal changes induced by very small superparamagnetic iron oxide nanoparticles (VSOP) and Gd-BOPTA. For analytical discrimination from endogenous Fe, VSOP were doped with europium (Eu) resulting in Eu-VSOP. Formalin-fixed arterial specimens were cut into 5-µm serial sections and analyzed by immunohistochemistry (IHC: Movat's pentachrome, von Kossa, and Alcian blue (pH 1.0) staining, anti-smooth muscle cell actin (anti-SMA), and anti-rabbit macrophage (anti-RAM-11) immunostaining) and elemental microscopy with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and synchrotron radiation µX-ray fluorescence (SR-µXRF) spectroscopy. Elemental distribution maps of Fe, Eu, Gd, sulfur (S), phosphorus (P), and calcium (Ca) were investigated. RESULTS: IHC characterized atherosclerotic plaque pathomorphology. Elemental microscopy showed S distribution to match the anatomy of arterial vessel wall layers, while P distribution corresponded well with cellular areas. LA-ICP-MS revealed Gd and Fe with a limit of detection of ~ 0.1 nmol/g and ~ 100 nmol/g, respectively. Eu-positive signal identified VSOP presence in the vessel wall and allowed the comparison of Eu-VSOP and endogenous Fe distribution in tissue sections. Extracellular matrix material correlated with Eu signal intensity, Fe concentration, and maximum Gd concentration. Eu-VSOP were confined to endothelium in early lesions but accumulated in cellular areas in advanced plaques. Gd distribution was homogeneous in healthy arteries but inhomogeneous in early and advanced plaques. SR-µXRF scans at 0.5 µm resolution revealed Gd hotspots with increased P and Ca concentrations at the intimomedial interface, and a size distribution ranging from a few micrometers to submicrometers. CONCLUSIONS: Eu-VSOP and Gd have distinct spatial distributions in atherosclerotic plaques. While Eu-VSOP distribution is more cell-associated and might be used to monitor atherosclerotic plaque progression, Gd distribution indicates arterial calcification and might help in characterizing plaque vulnerability.


Subject(s)
Contrast Media , Magnetic Resonance Imaging/methods , Mass Spectrometry/methods , Plaque, Atherosclerotic/diagnostic imaging , X-Ray Diffraction/methods , Angiography , Animals , Atherosclerosis/diagnostic imaging , Contrast Media/chemistry , Extracellular Matrix/metabolism , Ferric Compounds/chemistry , Gadolinium/chemistry , Iron/chemistry , Macrophages/pathology , Magnetite Nanoparticles/chemistry , Male , Metal Nanoparticles/chemistry , Rabbits , Synchrotrons
3.
Magn Reson Med ; 84(1): 103-114, 2020 07.
Article in English | MEDLINE | ID: mdl-31774210

ABSTRACT

PURPOSE: To develop and test real-time MR elastography for viscoelastic parameter quantification in skeletal muscle during dynamic exercises. METHODS: In 15 healthy participants, 6 groups of lower-leg muscles (tibialis anterior, tibialis posterior, peroneus, extensor digitorum longus, soleus, gastrocnemius) were investigated by real-time MR elastography using a single-shot, steady-state spiral gradient-echo pulse sequence and stroboscopic undersampling of harmonic vibrations at 40 Hz frequency. One hundred and eighty consecutive maps of shear-wave speed and loss angle (φ) covering 30.6 s of total acquisition time at 5.9-Hz frame rate were reconstructed from 360 wave images encoding 2 in-plane wave components in an interleaved manner. The experiment was carried out twice to investigate 2 exercises-isometric plantar flexion and isometric dorsiflexion-each performed over 10 s between 2 resting periods. RESULTS: Activation of lower-extremity muscles was associated with increasing viscoelastic parameters shear-wave speed and φ, both reflecting properties related to the transverse direction relative to fiber orientation. Major viscoelastic changes were observed in soleus muscle during plantar flexion (shear-wave speed: 20.0% ± 3.6%, φ: 41.3% ± 12.0%) and in the tibialis anterior muscle during dorsiflexion (41.8% ± 10.2%, φ: 27.9% ± 2.8%; all P < .0001). Two of the muscles analyzed were significantly activated by plantar flexion and 4 by dorsiflexion based on shear-wave speed, whereas φ changed significantly in 5 muscles during both exercises. CONCLUSION: Real-time MR elastography allows mapping of dynamic, nonperiodic viscoelasticity changes in soft tissues such as voluntary muscle with high spatial and temporal resolution. Real-time MR elastography thus opens new horizons for the in vivo study of physiological processes in soft tissues toward functional elastography.


Subject(s)
Elasticity Imaging Techniques , Exercise , Humans , Leg , Muscle, Skeletal/diagnostic imaging , Rest
SELECTION OF CITATIONS
SEARCH DETAIL
...