Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38607105

ABSTRACT

In healthcare facilities, infections caused by Staphylococcus aureus (S. aureus) from textile materials are a cause for concern, and nanomaterials are one of the solutions; however, their impact on safety and biocompatibility with the human body must not be neglected. This study aimed to develop a novel multilayer coating with poly(allylamine hydrochloride) (PAH) and immobilized ZnO nanoparticles (ZnO NPs) to make efficient antibacterial and biocompatible cotton, polyester, and nylon textiles. For this purpose, the coated textiles were characterized with profilometry, contact angles, and electrokinetic analyzer measurements. The ZnO NPs on the textiles were analyzed by scanning electron microscopy and inductively coupled plasma mass spectrometry. The antibacterial tests were conducted with S. aureus and biocompatibility with immortalized human keratinocyte cells. The results demonstrated successful PAH/ZnO coating formation on the textiles, demonstrating weak hydrophobic properties. Furthermore, PAH multilayers caused complete ZnO NP immobilization on the coated textiles. All coated textiles showed strong growth inhibition (2-3-log reduction) in planktonic and adhered S. aureus cells. The bacterial viability was reduced by more than 99%. Cotton, due to its better ZnO NP adherence, demonstrated a slightly higher antibacterial performance than polyester and nylon. The coating procedure enables the binding of ZnO NPs in an amount (<30 µg cm-2) that, after complete dissolution, is significantly below the concentration causing cytotoxicity (10 µg mL-1).

2.
Heliyon ; 10(1): e23849, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38192822

ABSTRACT

Prosthetic liners are mainly used as an interface between residual limbs and prosthetic sockets to minimize physical and biological damage to soft tissue. However, the closed and moist conditions within liners and the amputee's skin provide a suitable environment for bacterial growth to cause infections. This study aimed to coat a comprehensive variant material with copper oxide nanoparticles (CuO NPs) and compare their surface analysis and antibacterial properties. These materials were covered with CuO NPs solution at a concentration of 70 µg mL-1 to achieve this purpose. After drying, their surface characteristics were analyzed by measuring zeta potential, contact angle, surface roughness, and fiber arrangement. Cu-released concentration from the coatings into the acetate buffer solution by inductively coupled plasma mass spectrometry indicated that lycra and nylon quickly released Cu ions to concentrations up to ∼0.2 µg mL-1 after 24 h, causing low metabolic activity of human bone-marrow mesenchymal stem cells (bMSC) in the indirect assay. Antibacterial activity of the coated specimens was evaluated by infecting their surfaces with the Gram-positive bacteria Staphylococcus epidermidis, reporting a significant ∼40 % reduction of metabolic activity for x-dry after 24 h; in addition, the number of viable bacterial colonies adhered to the surface of this material was reduced by ∼23 times in comparison with non-treated x-dry that were visually confirmed by scanning electron microscope. In conclusion, CuO NPs x-dry shows optimistic results to pursue further experiments due to its slow speed of Cu release and prolonged antibacterial activity, as well as its compatibility with human cells.

3.
Nanomaterials (Basel) ; 13(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37513139

ABSTRACT

Full and partial restorations in dentistry must replicate the characteristics of the patient's natural teeth. Materials must have good mechanical properties and be non-toxic and biocompatible. Microbes, which can form biofilms, are constantly in contact with restorations. In this study, we investigate how well Candida albicans adheres to a polymethyl methacrylate (PMMA) resin base with gold (Au) nanoparticles. We synthesized Au nanoparticles and characterized them. The average size of Au nanoparticles embedded in PMMA was 11 nm. The color difference ΔE between PMMA and PMMA/Au composites was 2.7 and was still esthetically acceptable to patients. PMMA/Au surfaces are smoother and more hydrophilic than pure PMMA surfaces, and the isoelectric point of both types of surfaces was 4.3. Above the isoelectric point, PMMA/Au surfaces are more negatively charged than PMMA surfaces. The added Au nanoparticles decreased the tensile strength, while the hardness did not change significantly. Adhesion measurements showed that PMMA surfaces modified with Au nanoparticles reduced the extent of microbial adhesion of Candida albicans.

SELECTION OF CITATIONS
SEARCH DETAIL
...