Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(2)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36829709

ABSTRACT

The segmentation of the liver is a difficult process due to the changes in shape, border, and density that occur in each section in computed tomography (CT) images. In this study, the Adding Inception Module-Unet (AIM-Unet) model, which is a hybridization of convolutional neural networks-based Unet and Inception models, is proposed for computer-assisted automatic segmentation of the liver and liver tumors from CT scans of the abdomen. Experimental studies were carried out on four different liver CT image datasets, one of which was prepared for this study and three of which were open (CHAOS, LIST, and 3DIRCADb). The results obtained using the proposed method and the segmentation results marked by the specialist were compared with the Dice similarity coefficient (DSC), Jaccard similarity coefficient (JSC), and accuracy (ACC) measurement parameters. In this study, we obtained the best DSC, JSC, and ACC liver segmentation performance metrics on the CHAOS dataset as 97.86%, 96.10%, and 99.75%, respectively, of the AIM-Unet model we propose, which is trained separately on three datasets (LiST, CHAOS, and our dataset) containing liver images. Additionally, 75.6% and 65.5% of the DSC tumor segmentation metrics were calculated on the proposed model LiST and 3DIRCADb datasets, respectively. In addition, the segmentation success results on the datasets with the AIM-Unet model were compared with the previous studies. With these results, it has been seen that the method proposed in this study can be used as an auxiliary tool in the decision-making processes of physicians for liver segmentation and detection of liver tumors. This study is useful for medical images, and the developed model can be easily developed for applications in different organs and other medical fields.

2.
Appl Bionics Biomech ; 2021: 6662074, 2021.
Article in English | MEDLINE | ID: mdl-33628331

ABSTRACT

The electroencephalography (EEG) signals have been used widely for studying the brain neural information dynamics and behaviors along with the developing impact of using the machine and deep learning techniques. This work proposes a system based on the fast Fourier transform (FFT) as a feature extraction method for the classification of human brain resting-state electroencephalography (EEG) recorded signals. In the proposed system, the FFT method is applied on the resting-state EEG recordings and the corresponding band powers were calculated. The extracted relative power features are supplied to the classification methods (classifiers) as an input for the classification purpose as a measure of human tiredness through predicting lactate enzyme level, high or low. To validate the suggested method, we used an EEG dataset which has been recorded from a group of elite-level athletes consisting of two classes: not tired, the EEG signals were recorded during the resting-state task before performing acute exercise and tired, the EEG signals were recorded in the resting-state after performing an acute exercise. The performance of three different classifiers was evaluated with two performance measures, accuracy and precision values. The accuracy was achieved above 98% by the K-nearest neighbor (KNN) classifier. The findings of this study indicated that the feature extraction scheme has the ability to classify the analyzed EEG signals accurately and predict the level of lactate enzyme high or low. Many studying fields, like the Internet of Things (IoT) and the brain computer interface (BCI), can utilize the findings of the proposed system in many crucial decision-making applications.

3.
J Med Syst ; 36(2): 497-510, 2012 Apr.
Article in English | MEDLINE | ID: mdl-20703700

ABSTRACT

Curve and surface thinning are widely-used skeletonization techniques for modeling objects in three dimensions. In the case of disordered porous media analysis, however, neither is really efficient since the internal geometry of the object is usually composed of both rod and plate shapes. This paper presents an alternative to compute a hybrid shape-dependent skeleton and its application to porous media. The resulting skeleton combines 2D surfaces and 1D curves to represent respectively the plate-shaped and rod-shaped parts of the object. For this purpose, a new technique based on neural networks is proposed: cascade combinations of complex wavelet transform (CWT) and complex-valued artificial neural network (CVANN). The ability of the skeleton to characterize hybrid shaped porous media is demonstrated on a trabecular bone sample. Results show that the proposed method achieves high accuracy rates about 99.78%-99.97%. Especially, CWT (2nd level)-CVANN structure converges to optimum results as high accuracy rate-minimum time consumption.


Subject(s)
Artificial Intelligence , Bone and Bones/anatomy & histology , Image Processing, Computer-Assisted/methods , Porosity , Wavelet Analysis , Humans , Imaging, Three-Dimensional , Neural Networks, Computer
4.
J Med Syst ; 34(5): 815-28, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20703627

ABSTRACT

In order to prevent bone fractures due to disease and ageing of the population, and to detect problems while still in their early stages, 3D bone micro architecture needs to be investigated and characterized. Here, we have developed various image processing and simulation techniques to investigate bone micro architecture and its mechanical stiffness. We have evaluated morphological, topological and mechanical bone features using artificial intelligence methods. A clinical study is carried out on two populations of arthritic and osteoporotic bone samples. The performances of Adaptive Neuro Fuzzy Inference System (ANFIS), Support Vector Machines (SVM) and Genetic Algorithm (GA) in classifying the different samples have been compared. Results show that the best separation success (100 %) is achieved with Genetic Algorithm.


Subject(s)
Artificial Intelligence , Bone and Bones/ultrastructure , Imaging, Three-Dimensional , Osteoarthritis/pathology , Osteoporosis/pathology , Finite Element Analysis , Fractures, Spontaneous/prevention & control , Humans , Models, Biological , Osteoarthritis/classification , Osteoporosis/classification , Pattern Recognition, Automated
5.
J Med Syst ; 34(2): 101-5, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20433048

ABSTRACT

We present an algorithm to classify polyps in CT colonography images utilizing covariance matrices as object descriptors. Since these descriptors do not lie on a vector space, they cannot simply be fed to traditional machine learning tools such as support vector machines (SVMs) or artificial neural networks (ANNs). To benefit from the simple yet one of the most powerful nonparametric machine learning approach k-nearest neighbor classifier, it suffices to compute the pairwise distances among the covariance descriptors using a distance metric involving their generalized eigenvalues, which also follows from the Lie group structure of positive definite matrices. This approach is fast and discriminates polyps from non-polyps with high accuracy using only a small size descriptor, which consists of 36 unique features per image region extracted from the suspicious regions that we have obtained by combined cellular neural network (CNN) and template matching detection method. These suspicious regions are, in average, 15 x 17 = 255 pixels in our experiments.


Subject(s)
Colonic Polyps/classification , Algorithms , Colonic Polyps/diagnostic imaging , Colonography, Computed Tomographic , False Negative Reactions , Humans , Radiographic Image Interpretation, Computer-Assisted , Sensitivity and Specificity
6.
Med Phys ; 35(1): 195-205, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18293575

ABSTRACT

Cellular neural networks (CNNs) are massively parallel cellular structures with learning abilities. They can be used to realize complex image processing applications efficiently and in almost real time. In this preliminary study, we propose a novel, robust, and fully automated system based on CNNs to facilitate lesion localization in contrast-enhanced MR mammography, a difficult task requiring the processing of a large number of images with attention paid to minute details. The data set consists of 1170 slices containing one precontrast and five postcontrast bilateral axial MR mammograms from 39 patients with 37 malignant and 39 benign mass lesions acquired using a 1.5 Tesla MR scanner with the following parameters: 3D FLASH sequence, TR/TE 9.80/4.76 ms, flip angle 250, slice thickness 2.5 mm, and 0.625 x 0.625 mm2 in-plane resolution. Six hundred slices with 21 benign and 25 malignant lesions of this set are used for training the CNNs; the remaining data are used for test purposes. The breast region of interest is first segmented from precontrast images using four 2D CNNs connected in cascade, specially designed to minimize false detections due to muscles, heart, lungs, and thoracic cavity. To identify deceptively enhancing regions, a 3D nMITR map of the segmented breast is computed and converted into binary form. During this process tissues that have low degrees of enhancements are discarded. To boost lesions, this binary image is processed by a 3D CNN with a control template consisting of three layers of 11 x 11 cells and a fuzzy c-partitioning output function. A set of decision rules extracted empirically from the training data set based on volume and 3D eccentricity features is used to make final decisions and localize lesions. The segmentation algorithm performs well with high average precision, high true positive volume fraction, and low false positive volume fraction with an overall performance of 0.93 +/- 0.05, 0.96 +/- 0.04, and 0.03 +/- 0.05, respectively (training: 0.93 +/- 0.04, 0.94 +/- 0.04, and 0.02 +/- 0.03; test: 0.93 +/- 0.05, 0.97 +/- 0.03, and 0.05 +/- 0.06). The lesion detection performance of the system is quite satisfactory; for the training data set the maximum detection sensitivity is 100% with false-positive detections of 0.28/lesion, 0.09/slice, and 0.65/case; for the test data set the maximum detection sensitivity is 97% with false-positive detections of 0.43/lesion, 0.11/slice, and 0.68/case. On the average, for a detection sensitivity of 99%, the overall performance of the system is 0.34/lesion, 0.10/slice, and 0.67/case. The system introduced does not require prior information concerning breast anatomy; it is robust and exceptionally effective for detecting breast lesions. The use of CNNs, fuzzy c-partitioning, volume, and 3D eccentricity criteria reduces false-positive detections due to artifacts caused by highly enhanced blood vessels, nipples, and normal parenchyma and artifacts from vascularized tissues in the chest wall due to oversegmentation. We hope that this system will facilitate breast examinations, improve the localization of lesions, and reduce unnecessary mastectomies, especially due to missed multicentric lesions and that almost real-time processing speeds achievable by direct hardware implementations will open up new clinical applications, such as making feasible quasi-automated MR-guided biopsies and acquisition of additional postcontrast lesion images to improve morphological characterizations.


Subject(s)
Breast/pathology , Computer Simulation , Magnetic Resonance Imaging , Mammography/methods , Neural Networks, Computer , Algorithms , Artifacts , False Positive Reactions , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...