Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Reprod ; 21(1): e20230115, 2024.
Article in English | MEDLINE | ID: mdl-38510567

ABSTRACT

In the current study, we aimed to assess the expression levels of two circulating microRNAs (miRNA) (oar-miR-485-5p and oar-miR-493-5p) in the ovine plasma during the peri-implantation. After mating, we collected the plasma samples from a total of 8 ewes on day 22 of pregnancy (P22; n = 4) and day 22 of the estrous cycle (C22; n=4). We used mature miRNA sequences for oar-miR-485-5p and oar-miR-493-5p out of one hundred fifty, which were retrieved from our microarray results of previous study. We showed that the miRNA expression of oar-miR-485-5p and oar-miR-493-5p were upregulated in P22 (P<0.05) when compared to C22. Those two miRNAs targeted 311 target genes in the peri-implantation period of pregnancy. Furthermore, we revealed 151 GO/pathway terms in biological process (BP) and 25 GO/pathway terms in molecular function (MF), while we demonstrated 13 GO/pathway terms in cellular component (CC). We revealed three hub genes as interleukin 2 (IL2), interleukin 18 (IL18), and C-X-C Motif Chemokine Ligand 10 (CXCL10). In conclusion, both miR-485-5p and oar-miR-493-5p have the potential to be a biomarker to understand peri-implantation of the ovine pregnancy in the aspect of pregnancy-reflected changes in maternal plasma.

2.
Theriogenology ; 218: 153-162, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38325152

ABSTRACT

The binding of steroid hormones to their specific receptors is necessary to exert their effects on target cells. Progesterone (P4), a steroid hormone, carries out its effects through both genomic and non-genomic (the cell membrane-associated) receptors. This study aimed to ascertain luteal expression patterns of genomic and non-genomic progesterone receptors in bitches in physiological (early dioestrus and early pregnant) and pathological (pyometra) reproductive states. Luteal tissue was collected from the bitches at early dioestrus (ED, n = 5), early pregnant (EP, n = 5), and pyometra (PY, n = 5). The expression profiles of Steroidogenic Acute Regulator Protein (STAR), Progesterone Receptor (PGR), Membrane Progestin Receptors (PAQR5, PAQR7 and PAQR8), and Progesterone Membrane Components (PGMRC1 and PGMRC2) were examined at the mRNA levels using Real-Time Polymerase Chain Reaction (RT-PCR). Protein levels of PGR, PGMRC1 and PGMRC2 were detected by western blotting (WB). The STAR expression was found in all groups, with a statistical difference observed between EP and PY groups (P < 0.05). The protein level of PGR was determined to be highest in the EP group and lowest in the PY group. The expression of PAQR8 increased in the EP group (P < 0.05). The PAQR5 exhibited high expression in the EP group and low expression in the PY group (P < 0.05). PGRMC1 was more elevated in the EP group and lower in the PY group (P < 0.05). Protein levels of PGMRC1 and PGMRC2 were also observed at the highest expression in EP group. According to the altered expression profiles for examined receptors, we suggest that those progesterone receptors have roles in early pregnancy or pyometra in bitches.


Subject(s)
Pyometra , Receptors, Progesterone , Pregnancy , Female , Animals , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Progesterone/pharmacology , Lutein , Pyometra/veterinary , Genomics
3.
Anim Reprod Sci ; 216: 106347, 2020 May.
Article in English | MEDLINE | ID: mdl-32414457

ABSTRACT

The aim of this study was to investigate relative abundance and localization of ISG15 mRNA transcript in intra-uterine (trophoblast, endometrium) and extra-uterine (hypothalamus, anterior pituitary, corpus luteum) tissues before and during the period of conceptus implantation. Multiparous ewes (n = 16) were randomly allotted into four groups: pregnant or estrous cyclic on days of 12 and 16 (n = 4 per group) following estrus. Relative abundances of ISG15 mRNA transcript were determined in the endometrium, corpus luteum, hypothalamus, and anterior-pituitary using real time quantitative PCR. Localization of ISG15 mRNA transcript was evaluated using in situ hybridization. The presence of ISG15 mRNA transcript was only visualized in intra-uterine tissues including the endometrium and trophoblast on day 12 of pregnancy. The ISG15 mRNA transcript was detected in all tissues evaluated on day 16 of pregnancy. The abundance of ISG15 mRNA transcript was greater in the endometrium on day 12 of pregnancy than at other days when evaluations occurred while in all other tissues except the hypothalamus there were large abundances of ISG15 mRNA on day 16 of pregnancy. It is concluded that the ISG15 mRNA transcript is only present in intra-uterine tissues before conceptus implantation. The ISG15 mRNA transcript, however, is present in extra-uterine tissues of ewes during implantation probably due to an increased amount of interferon-tau in blood circulation that is produced by the developing embryo. Results also indicate, for the first time, that pregnancy is associated with an intra-hypothalamus and anterior pituitary increased abundance of ISG15 mRNA transcript in ewes.


Subject(s)
Cytokines/metabolism , Gene Expression Regulation/physiology , Sheep/physiology , Ubiquitins/metabolism , Animals , Cytokines/genetics , Female , Pregnancy , RNA, Messenger , Tissue Distribution , Ubiquitins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...