Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(42): eabp9530, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37851804

ABSTRACT

Although initially successful, treatments with chemotherapy often fail because of the recurrence of chemoresistant metastases. Since these tumors develop after treatment, resistance is generally thought to occur in response to chemotherapy. However, alternative mechanisms of intrinsic chemoresistance in the chemotherapy-naïve setting may exist but remain poorly understood. Here, we study drug-naïve murine breast cancer brain metastases (BCBMs) to identify how cancer cells growing in a secondary site can acquire intrinsic chemoresistance without cytotoxic agent exposure. We demonstrate that drug-naïve murine breast cancer cells that form cancer lesions in the brain undergo vascular mimicry and concomitantly express the adenosine 5'-triphosphate-binding cassette transporter breast cancer resistance protein (BCRP), a common marker of brain endothelial cells. We reveal that expression of BCRP by the BCBM tumor cells protects them against doxorubicin and topotecan. We conclude that BCRP overexpression can cause intrinsic chemoresistance in cancer cells growing in metastatic sites without prior chemotherapy exposure.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Breast Neoplasms , Animals , Female , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Brain Neoplasms/drug therapy , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Endothelial Cells/metabolism , Neoplasm Proteins/metabolism
2.
J Exp Clin Cancer Res ; 42(1): 56, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36869386

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) can be divided into four consensus molecular subtypes (CMS), each with distinct biological features. CMS4 is associated with epithelial-mesenchymal transition and stromal infiltration (Guinney et al., Nat Med 21:1350-6, 2015; Linnekamp et al., Cell Death Differ 25:616-33, 2018), whereas clinically it is characterized by lower responses to adjuvant therapy, higher incidence of metastatic spreading and hence dismal prognosis (Buikhuisen et al., Oncogenesis 9:66, 2020). METHODS: To understand the biology of the mesenchymal subtype and unveil specific vulnerabilities, a large CRISPR-Cas9 drop-out screen was performed on 14 subtyped CRC cell lines to uncover essential kinases in all CMSs. Dependency of CMS4 cells on p21-activated kinase 2 (PAK2) was validated in independent 2D and 3D in vitro cultures and in vivo models assessing primary and metastatic outgrowth in liver and peritoneum. TIRF microscopy was used to uncover actin cytoskeleton dynamics and focal adhesion localization upon PAK2 loss. Subsequent functional assays were performed to determine altered growth and invasion patterns. RESULTS: PAK2 was identified as a key kinase uniquely required for growth of the mesenchymal subtype CMS4, both in vitro and in vivo. PAK2 plays an important role in cellular attachment and cytoskeletal rearrangements (Coniglio et al., Mol Cell Biol 28:4162-72, 2008; Grebenova et al., Sci Rep 9:17171, 2019). In agreement, deletion or inhibition of PAK2 impaired actin cytoskeleton dynamics in CMS4 cells and, as a consequence, significantly reduced invasive capacity, while it was dispensable for CMS2 cells. Clinical relevance of these findings was supported by the observation that deletion of PAK2 from CMS4 cells prevented metastatic spreading in vivo. Moreover, growth in a model for peritoneal metastasis was hampered when CMS4 tumor cells were deficient for PAK2. CONCLUSION: Our data reveal a unique dependency of mesenchymal CRC and provide a rationale for PAK2 inhibition to target this aggressive subgroup of colorectal cancer.


Subject(s)
Colorectal Neoplasms , Sarcoma , Humans , Actin Cytoskeleton , Carcinogenesis , Cell Line
3.
Cell Rep Med ; 3(11): 100821, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36384097

ABSTRACT

An increasing number of breast cancer patients develop brain metastases (BM). Standard-of-care treatments are largely inefficient, and breast cancer brain metastasis (BCBM) patients are considered untreatable. Immunotherapies are not successfully employed in BCBM, in part because breast cancer is a "cold" tumor and also because the brain tissue has a unique immune landscape. Here, we generate and characterize immunocompetent models of BCBM derived from PyMT and Neu mammary tumors to test how harnessing the pro-senescence properties of doxorubicin can be used to prime the specific immune BCBM microenvironment. We reveal that BCBM senescent cells, induced by doxorubicin, trigger the recruitment of PD1-expressing T cells to the brain. Importantly, we demonstrate that induction of senescence with doxorubicin improves the efficacy of immunotherapy with anti-PD1 in BCBM in a CD8 T cell-dependent manner, thereby providing an optimized strategy to introduce immune-based treatments in this lethal disease. In addition, our BCBM models can be used for pre-clinical testing of other therapeutic strategies in the future.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Brain Neoplasms/drug therapy , Doxorubicin/pharmacology , Immunotherapy , Tumor Microenvironment
4.
Cancers (Basel) ; 14(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35804890

ABSTRACT

(1) Background: an increasing number of breast cancer patients develop lethal brain metastases (BM). The complete removal of these tumors by surgery becomes complicated when cells infiltrate into the brain parenchyma. However, little is known about the nature of these invading cells in breast cancer brain metastasis (BCBM). (2) Methods: we use intravital microscopy through a cranial window to study the behavior of invading cells in a mouse model of BCBM. (3) Results: we demonstrate that BCBM cells that escape from the metastatic mass and infiltrate into brain parenchyma undergo epithelial-to-mesenchymal transition (EMT). Moreover, cells undergoing EMT revert to an epithelial state when growing tumor masses in the brain. Lastly, through multiplex immunohistochemistry, we confirm the presence of these infiltrative cells in EMT in patient samples. (4) Conclusions: together, our data identify the critical role of EMT in the invasive behavior of BCBM, which warrants further consideration to target those cells when treating BCBM.

5.
Sci Rep ; 12(1): 424, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013418

ABSTRACT

Glioma is the most common form of malignant primary brain tumours in adults. Their highly invasive nature makes the disease incurable to date, emphasizing the importance of better understanding the mechanisms driving glioma invasion. Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is characteristic for astrocyte- and neural stem cell-derived gliomas. Glioma malignancy is associated with changes in GFAP alternative splicing, as the canonical isoform GFAPα is downregulated in higher-grade tumours, leading to increased dominance of the GFAPδ isoform in the network. In this study, we used intravital imaging and an ex vivo brain slice invasion model. We show that the GFAPδ and GFAPα isoforms differentially regulate the tumour dynamics of glioma cells. Depletion of either isoform increases the migratory capacity of glioma cells. Remarkably, GFAPδ-depleted cells migrate randomly through the brain tissue, whereas GFAPα-depleted cells show a directionally persistent invasion into the brain parenchyma. This study shows that distinct compositions of the GFAPnetwork lead to specific migratory dynamics and behaviours of gliomas.


Subject(s)
Brain Neoplasms/pathology , Brain/pathology , Cell Movement , Glial Fibrillary Acidic Protein/metabolism , Glioma/pathology , Animals , Brain Neoplasms/metabolism , Cell Line, Tumor , Female , Glioma/metabolism , Intravital Microscopy , Male , Mice, Inbred C57BL , Neoplasm Invasiveness , Protein Isoforms
6.
Biochem Biophys Res Commun ; 520(1): 198-204, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31585732

ABSTRACT

Increased angiogenesis is commonly observed in chronic lymphocytic leukemia (CLL) tissues in correlation with advanced disease. CLL cells express pro- and anti-angiogenic genes and acquire a pro-angiogenic pattern upon interaction with the microenvironment. Because MMP-9 (a microenvironment component) plays important roles in solid tumor angiogenesis, we have studied whether MMP-9 influenced the angiogenic pattern in CLL cells. Immunofluorescence analyses confirmed the presence of MMP-9 in CLL tissues. MMP-9 interaction with CLL cells increased their MMP-9 expression and secretion into the medium. Accordingly, the conditioned media of MMP-9-primed CLL cells significantly enhanced endothelial cell proliferation, compared to control cells. MMP-9 also increased VEGF and decreased TSP-1 and Ang-2 expression, all at the gene and protein level, inducing a pro-angiogenic pattern in CLL cells. Mechanistic analyses demonstrated that downregulation of the selected gene TSP-1 by MMP-9 involved α4ß1 integrin, Src kinase family activity and the STAT3 transcription factor. Regulation of angiogenic genes is a novel contribution of MMP-9 to CLL pathology.


Subject(s)
Angiopoietin-2/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/enzymology , Matrix Metalloproteinase 9/metabolism , Neovascularization, Pathologic , STAT3 Transcription Factor/metabolism , Aged , Cell Proliferation , Culture Media, Conditioned , Endothelial Cells/metabolism , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Leukemic , Human Umbilical Vein Endothelial Cells , Humans , Integrin alpha4beta1/metabolism , Male , Middle Aged
7.
Oncogene ; 38(23): 4605-4619, 2019 06.
Article in English | MEDLINE | ID: mdl-30760844

ABSTRACT

We previously showed that MMP-9 contributes to CLL pathology by regulating cell survival and migration and that, when present at high levels, MMP-9 induces cell arrest. To further explore the latter function, we studied whether MMP-9 influences the gene-expression profile in CLL. Microarray analyses rendered 131 differentially expressed genes in MEC-1 cells stably transfected with MMP-9 (MMP-9-cells) versus cells transfected with empty vector (Mock-cells). Ten out of twelve selected genes were also differentially expressed in MEC-1 cells expressing the catalytically inactive MMP-9MutE mutant (MMP-9MutE-cells). Incubation of primary CLL cells with MMP-9 or MMP-9MutE also regulated gene and protein expression, including CD99, CD226, CD52, and CD274. Because CD99 is involved in leukocyte transendothelial migration, we selected CD99 for functional and mechanistic studies. The link between MMP-9 and CD99 was reinforced with MMP-9 gene silencing studies, which resulted in CD99 upregulation. CD99 gene silencing significantly reduced CLL cell adhesion, chemotaxis and transendothelial migration, while CD99 overexpression increased cell migration. Mechanistic analyses indicated that MMP-9 downregulated CD99 via binding to α4ß1 integrin and subsequent inactivation of the Sp1 transcription factor. This MMP-9-induced mechanism is active in CLL lymphoid tissues, since CD99 expression and Sp1 phosphorylation was lower in bone marrow-derived CLL cells than in their peripheral blood counterparts. Our study establishes a new gene regulatory function for MMP-9 in CLL. It also identifies CD99 as an MMP-9 target and a novel contributor to CLL cell adhesion, migration and arrest. CD99 thus constitutes a new therapeutic target in CLL, complementary to MMP-9.


Subject(s)
12E7 Antigen/metabolism , Cell Cycle Checkpoints , Cell Movement , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Matrix Metalloproteinase 9/physiology , 12E7 Antigen/genetics , Catalysis , Cell Adhesion/genetics , Cell Cycle Checkpoints/genetics , Cell Movement/genetics , Cells, Cultured , Disease Progression , Gene Expression Regulation, Leukemic , Human Umbilical Vein Endothelial Cells , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Protein Binding , Transendothelial and Transepithelial Migration/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...