Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 718(1-3): 197-205, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24036257

ABSTRACT

A number of studies have demonstrated the biological activities of peroxisome proliferator-activated receptors. However, few studies have addressed the effects of the agonists of these receptors on lung diseases. The aim of the present study was to evaluate the anti-inflammatory action of a novel synthetic thiazolidine derivative (5Z)-3-benzyl-5-(1H-indol-3-ylmethylene)-thiazolidine-2,4-dione (LPSF/RA-4) on acute lung inflammation (pleurisy) induced by carrageenan. Forty mice were randomly allocated to the following groups: (I) saline control group (sham); (II) carrageenan (CAR) group; (III) CAR+LPSF/RA-4 group treated with LPSF/RA-4 (60 µmol/kg); and (IV) INDO group treated with indometacin (5mg/kg). Total cell counts and the measure of nitric oxide (NO) were performed in pleural exudates. Lung fragments were processed for light microscopy, transmission electron microscopy, immunohistochemistry and Western blotting. The influx of leucocytes and NO levels were significantly reduced following treatment with LPSF/RA-4 and INDO. Histopathological and ultrastructural analyses of the CAR group revealed evident tissue alterations, such as oedema, infiltrates of inflammatory cells and emphysema. These alterations were significantly reduced in the groups treated with LPSF/RA-4 or INDO. Immunohistochemistry revealed an increase in inflammatory markers (COX-2, iNOS, TNF-α and IL-1ß) in the lung tissue of the CAR group, whereas the groups treated with LPSF/RA-4 and INDO exhibited significant reductions in such immunomarkers. Western blot analysis revealed an increased expression of COX-2 and IL-1 in the CAR group, which was reduced by treatment with LPSF/RA-4. The present findings demonstrate the potent anti-inflammatory action of the novel derivative thiazolidinedione LPSF/RA-4 in acute lung injury induced by carrageenan.


Subject(s)
Carrageenan/adverse effects , Indoles/pharmacology , Pneumonia/chemically induced , Pneumonia/drug therapy , Thiazolidinediones/pharmacology , Acute Disease , Animals , Gene Expression Regulation, Enzymologic/drug effects , Indoles/therapeutic use , Inflammation Mediators/metabolism , Leukocyte Count , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Lung/drug effects , Lung/pathology , Male , Mice , Nitric Oxide/metabolism , Pleurisy/chemically induced , Pleurisy/drug therapy , Pneumonia/blood , Pneumonia/genetics , Thiazolidinediones/therapeutic use
2.
Eur J Pharm Sci ; 48(4-5): 689-97, 2013 Mar 12.
Article in English | MEDLINE | ID: mdl-23305993

ABSTRACT

The compound (5Z)-5-[(5-bromo-1H-indol-3-yl)methylene]-3-(4-chlorobenzyl)-thiazolidine-2,4-dione (LYSO-7) was synthesised in order to obtain a new type of anti-inflammatory drug, designed with hybrid features to inhibit cyclooxygenase (COX) and also to activate peroxisome proliferator-activated receptor (PPAR). Results obtained from docking (in silico) studies corroborated with experimental data, showing the potential affinity between the studied ligand and targets. The specificity of LYSO-7 for COX-enzymes was detected by the inhibition of COX-1 and COX-2 activities by 30% and 20%, respectively. In transactivation reporter gene assays LYSO-07 showed a pan partial agonist effect on the three PPAR subtypes (PPARγ, PPARα and PPARß/δ). The agonist action on PPARγ was also observed by a pharmacological approach, as the reduction in the Escherichia coli lipopolysaccharide (LPS)-induced interleukin 1 beta (IL-1ß) secretion and nitric oxide (NO) production by mouse neutrophils was blocked by GW9962, a specific PPARγ antagonist. Additionally, the in vivo effect was measured by reduced carrageenan-induced neutrophil influx into the subcutaneous tissue of mice. Taken together, these data show that LYSO-7 displays a potent in vivo anti-inflammatory effect during the innate acute response, which is dependent on its associated COX inhibitory activities and PPAR activation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Indoles/pharmacology , Peroxisome Proliferator-Activated Receptors/agonists , Thiazolidinediones/pharmacology , Animals , Carrageenan , Cell Movement/drug effects , HeLa Cells , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Leukocytes/drug effects , Leukocytes/physiology , Male , Mice , Models, Molecular
3.
J AOAC Int ; 93(4): 1215-21, 2010.
Article in English | MEDLINE | ID: mdl-20922954

ABSTRACT

A rapid, sensitive, and simple HPLC/MS/MS method was developed and validated for the determination of (5Z,E)-3-[2-(4-chlorophenyl)-2-oxoethyl]-5-(1H-indol-3-ylmethylene)-thiazolidine-2, 4-dione (PG15) in rat plasma using chlortalidone as an internal standard (IS). Analyses were performed using a C18 column and isocratic elution with acetonitrile-water (90 + 10, v/v) containing 10 mM ammonium hydroxide (pH 8.0) as the mobile phase pumped at 0.3 mL/min. Detection was performed by MS with negative ion mode electrospray ionization. Rat plasma samples were prepared by deproteinizing with acetonitrile. Detected fragments were 395.1 > 171.9 for PG15 and 337.3 > 189.9 for the IS. Calibration curves were linear from 10 to 1000 ng/mL, with the determination coefficient > 0.99. The intraday and interday precisions were less than 12.2 and 11.3%, respectively. The applicability of the HPLC/MS/MS method for pharmacokinetic studies was tested using plasma samples obtained after oral administration of PG15 to rats, and it provided the necessary sensitivity, linearity, precision, accuracy, and specificity.


Subject(s)
Chromatography, High Pressure Liquid/methods , Indoles/blood , Tandem Mass Spectrometry/methods , Thiazolidines/blood , Animals , Drug Stability , Indoles/chemistry , Rats , Thiazolidines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...