Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(20): 5535-5542, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38752703

ABSTRACT

In this work, La(FeCuMnMgTi)O3 HEO nanoparticles with a perovskite-type structure are synthesized and used in the electrocatalytic CO2 reduction reaction (CO2RR). The catalyst demonstrates high performance as an electrocatalyst for the CO2RR, with a Faradaic efficiency (FE) of 92.5% at a current density of 21.9 mA cm-2 under -0.75 V vs a saturated calomel electrode (SCE). Particularly, an FE above 54% is obtained for methyl isopropyl ketone (C5H10O, MIPK) at a partial current density of 16 mA cm-2, overcoming all previous works. Besides, the as-prepared HEO catalyst displays robust stability in the CO2RR. The excellent catalytic performance of La(FeCuMnMgTi)O3 is ascribed to the synergistic effect between the electronic effects associated with five cations occupying the high-entropy sublattice sites and the oxygen vacancies within the perovskite structure of the HEO. Finally, DFT calculations indicate that Cu plays a vital role in the catalytic activity of the La(FeCuMnMgTi)O3 HEO nanoparticles toward C2+ products.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 80(Pt 1): 42-50, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38205836

ABSTRACT

Diacetylenedisalicylic acid is a new rigid linker molecule, capable of forming strong chelate bonds with metal cations. Its monosubstituted salts with dimethylamine and sodium form 1D and 2D coordination polymers, whose structures were solved from single crystals, along with the dimethyl ester of diacetylenedisalicylic acid. The structure of the dimethyl ester is characterized by a dense co-facial π-stacking of molecules with a dominance of van der Waals interactions between the stacks. The angle between the stack direction and the butadiyne groups does not meet the Enkelmann criterion for polymerization in a crystal. In contrast to the dimethyl ester, both salts have a rigid framework with channels filled with disordered solvent molecules. Photoluminescence spectra of the acid and its dimethyl ester have been studied. Thermal analysis of the acid confirms its high thermal stability to 286°C. The acid and its dimethyl ester are prone to polymerization on further heating followed by 50-52% mass loss, forming an amorphous carbon residue at 1000°C.

SELECTION OF CITATIONS
SEARCH DETAIL
...