Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Leukoc Biol ; 104(6): 1147-1157, 2018 12.
Article in English | MEDLINE | ID: mdl-30117603

ABSTRACT

IL-10 and IL-35 suppress excessive immune responses and therapeutic strategies are being developed to increase their levels in autoimmune diseases. In this study, we sought to identify major cell types that produce both cytokines in-vivo and to characterize mechanisms that regulate their production. Experimental autoimmune uveitis (EAU) is a CNS autoimmune disease that serves as model of human uveitis. We induced EAU in C57BL/6J mice and investigated whether T cells, B lymphocytes, or myeloid cells are the major producers of IL-10 or IL-35 in blood, lymph nodes (LNs), spleen, and at the site of ocular inflammation, the neuroretina. Analysis of these tissues identified B cells as the major producers of IL-10 and IL-35 in-vivo. Compared to regulatory T cells (Tregs), IL-10- or IL-35-producing regulatory B cells (Bregs) are substantially expanded in blood, LNs, spleen, and retina of mice with EAU. We performed EMSA and chromatin immunoprecipitation (ChIP) assays on activated B cells stimulated with IL-35 or TLR agonists. We found that BATF, IFN regulatory factor (IRF)-4, and IRF-8 transcription factors were recruited and bound to AP1-IRF-composite elements (AICEs) of il12a, ebi3, and/or il10 loci, suggesting their involvement in regulating IL-10 and IL-35 transcriptional programs of B cells. Showing that B cells are major source of IL-10 and IL-35 in-vivo and identifying transcription factors that contribute to IL-10 and IL-35 expression in the activated B-cell, suggest that the BATF/IRF-4/IRF-8 axis can be exploited therapeutically to regulate physiological levels of IL-10/IL-35-Bregs and that adoptive transfer of autologous Bregs might be an effective therapy for autoimmune and neurodegenerative diseases.


Subject(s)
Autoimmune Diseases/immunology , B-Lymphocytes, Regulatory/metabolism , Basic-Leucine Zipper Transcription Factors/physiology , Interferon Regulatory Factors/physiology , Interleukin-10/genetics , Interleukin-12 Subunit p35/genetics , Interleukins/biosynthesis , Minor Histocompatibility Antigens/genetics , Receptors, Cytokine/genetics , Uveitis/immunology , Animals , Autoimmune Diseases/metabolism , Female , Interleukin-10/biosynthesis , Interleukin-12 Subunit p35/biosynthesis , Interleukins/agonists , Interleukins/genetics , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Random Allocation , Retina/immunology , Retina/metabolism , Retina/pathology , T-Lymphocytes, Regulatory/immunology , Transcription, Genetic , Uveitis/metabolism
2.
Front Immunol ; 8: 1258, 2017.
Article in English | MEDLINE | ID: mdl-29051763

ABSTRACT

Multiple sclerosis (MS) is an inflammatory demyelinating disease in which cytokines produced by immune cells that infiltrate the brain and spinal cord play a central role. We show here that the IL-12p35, the alpha subunit of IL-12 or IL-35 cytokine, might be an effective biologic for suppressing neuroinflammatory responses and ameliorating the pathology of experimental autoimmune encephalomyelitis (EAE), the mouse model of human MS. We further show that IL-12p35 conferred protection from neuropathy by inhibiting the expansion of pathogenic Th17 and Th1 cells and inhibiting trafficking of inflammatory cells into the brain and spinal cord. In addition, in vitro exposure of encephalitogenic cells to IL-12p35 suppressed their capacity to induce EAE by adoptive transfer. Importantly, the IL-12p35-mediated expansion of Treg and Breg cells and its amelioration of EAE correlated with inhibition of cytokine-induced activation of STAT1/STAT3 pathways. Moreover, IL-12p35 inhibited lymphocyte proliferation by suppressing the expressions of cell-cycle regulatory proteins. Taken together, these results suggest that IL-12p35 can be exploited as a novel biologic for treating central nervous system autoimmune diseases and offers the promise of ex vivo production of large amounts of Tregs and Bregs for immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...