Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 70: 103077, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38359749

ABSTRACT

Inflammatory diseases present a serious health challenge due to their widespread prevalence and the severe impact on patients' lives. In the quest to alleviate the burden of these diseases, nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a pivotal player. As a transcription factor intimately involved in cellular defense against metabolic and oxidative stress, Nrf2's role in modulating the inflammatory responses of immune cells has garnered significant attention. Recent findings suggest that Nrf2's ability to alter the redox status of cells underlies its regulatory effects on immune responses. Our review delves into preclinical and clinical evidence that underscores the complex influence of Nrf2 activators on immune cell phenotypes, particularly in the inflammatory milieu. By offering a detailed analysis of Nrf2's role in different immune cell populations, we cast light on the potential of Nrf2 activators in shaping the immune response towards a more regulated state, mitigating the adverse effects of inflammation through modeling redox status of immune cells. Furthermore, we explore the innovative use of nanoencapsulation techniques that enhance the delivery and efficacy of Nrf2 activators, potentially advancing the treatment strategies for inflammatory ailments. We hope this review will stimulate the development and expansion of Nrf2-targeted treatments that could substantially improve outcomes for patients suffering from a broad range of inflammatory diseases.


Subject(s)
NF-E2-Related Factor 2 , Oxidative Stress , Humans , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Antioxidants/metabolism , Immunity
2.
J Mol Cell Cardiol ; 185: 1-12, 2023 12.
Article in English | MEDLINE | ID: mdl-37839656

ABSTRACT

We recently described a subgroup of autopsied COVID-19 subjects (∼40%), termed 'profibrotic phenotype,' who exhibited clusters of myofibroblasts (Mfbs), which were positive for the collagen-specific chaperone heat shock protein 47 (HSP47+) in situ. This report identifies increased, localized (hot spot restricted) expression of αSMA, COLα1, POSTN and FAP supporting the identity of HSP47+ cells as myofibroblasts and characterizing a profibrotic extracellular matrix (ECM) phenotype. Coupled with increased GRP78 in COVID-19 subjects, these data could reflect induction of the unfolded protein response for mitigation of proteostasis (i.e., protein homeostasis) dysfunction in discrete clusters of cells. ECM shifts in selected COVID-19 subjects occur without significant increases in either global trichrome positive staining or myocardial injury based quantitively on standard H&E scoring. Our findings also suggest distinct mechanism(s) for ECM remodeling in the setting of SARS-CoV-2 infection. The ratio of CD163+/CD68+ cells is increased in hot spots of profibrotic hearts compared with either controls or outside of hot spots in COVID-19 subjects. In sum, matrix remodeling of human COVID-19 hearts in situ is characterized by site-restricted profibrotic mediated (e.g., HSP47+ Mfbs, CD163+ Mφs) modifications in ECM (i.e., COLα1, POSTN, FAP), with a strong correlation between COLα1 and HSP47+cells within hot spots. Given the established associations of viral infection (e.g., human immunodeficiency virus; HIV), myocardial fibrosis and sudden cardiac death, early screening tools (e.g., plasma biomarkers, noninvasive cardiac magnetic resonance imaging) for diagnosis, monitoring and treatment of fibrotic ECM remodeling are warranted for COVID-19 high-risk populations.


Subject(s)
COVID-19 , Myofibroblasts , Humans , Myofibroblasts/metabolism , COVID-19/pathology , SARS-CoV-2 , Heart , HSP47 Heat-Shock Proteins/genetics , HSP47 Heat-Shock Proteins/metabolism , Fibrosis
3.
Antioxidants (Basel) ; 12(8)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37627583

ABSTRACT

Doxorubicin (DOX), one of the most effective and widely used anticancer drugs, has the major limitation of cancer treatment-related cardiotoxicity (CTRTOX) in the clinic. Reactive oxygen species (ROS) generation and mitochondrial dysfunction are well-known consequences of DOX-induced injury to cardiomyocytes. This study aimed to explore the mitochondrial functional consequences and associated mechanisms of pretreatment with carvedilol, a ß-blocking agent known to exert protection against DOX toxicity. When disease modeling was performed using cultured rat cardiac muscle cells (H9c2 cells) and human iPSC-derived cardiomyocytes (iPSC-CMs), we found that prophylactic carvedilol mitigated not only the DOX-induced suppression of mitochondrial function but that the mitochondrial functional readout of carvedilol-pretreated cells mimicked the readout of cells overexpressing the major regulator of mitochondrial biogenesis, PGC-1α. Carvedilol pretreatment reduces mitochondrial oxidants, decreases cell death in both H9c2 cells and human iPSC-CM and maintains the cellular 'redox poise' as determined by sustained expression of the redox sensor Keap1 and prevention of DOX-induced Nrf2 nuclear translocation. These results indicate that, in addition to the already known ROS-scavenging effects, carvedilol has a hitherto unrecognized pro-reducing property against the oxidizing conditions induced by DOX treatment, the sequalae of DOX-induced mitochondrial dysfunction and compromised cell viability. The novel findings of our preclinical studies suggest future trial design of carvedilol prophylaxis, such as prescreening for redox state, might be an alternative strategy for preventing oxidative stress writ large in lieu of the current lack of clinical evidence for ROS-scavenging agents.

4.
Antioxidants (Basel) ; 12(4)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37107272

ABSTRACT

Metabolic imbalances and persistent hyperglycemia are widely recognized as driving forces for augmented cytosolic and mitochondrial reactive oxygen species (ROS) in diabetes mellitus (DM), fostering the development of vascular complications such as diabetic nephropathy, diabetic cardiomyopathy, diabetic neuropathy, and diabetic retinopathy. Therefore, specific therapeutic approaches capable of modulating oxidative milieu may provide a preventative and/or therapeutic benefit against the development of cardiovascular complications in diabetes patients. Recent studies have demonstrated epigenetic alterations in circulating and tissue-specific long non-coding RNA (lncRNA) signatures in vascular complications of DM regulating mitochondrial function under oxidative stress. Intriguingly, over the past decade mitochondria-targeted antioxidants (MTAs) have emerged as a promising therapeutic option for managing oxidative stress-induced diseases. Here, we review the present status of lncRNA as a diagnostic biomarker and potential regulator of oxidative stress in vascular complications of DM. We also discuss the recent advances in using MTAs in different animal models and clinical trials. We summarize the prospects and challenges for the use of MTAs in treating vascular diseases and their application in translation medicine, which may be beneficial in MTA drug design development, and their application in translational medicine.

5.
Redox Biol ; 48: 102196, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34872044

ABSTRACT

Mutations in the human LMNA gene cause a collection of diseases called laminopathies, which includes muscular dystrophy and dilated cardiomyopathy. The LMNA gene encodes lamins, filamentous proteins that form a meshwork on the inner side of the nuclear envelope. How mutant lamins cause muscle disease is not well understood, and treatment options are currently limited. To understand the pathological functions of mutant lamins so that therapies can be developed, we generated new Drosophila models and human iPS cell-derived cardiomyocytes. In the Drosophila models, muscle-specific expression of the mutant lamins caused nuclear envelope defects, cytoplasmic protein aggregation, activation of the Nrf2/Keap1 redox pathway, and reductive stress. These defects reduced larval motility and caused death at the pupal stage. Patient-derived cardiomyocytes expressing mutant lamins showed nuclear envelope deformations. The Drosophila models allowed for genetic and pharmacological manipulations at the organismal level. Genetic interventions to increase autophagy, decrease Nrf2/Keap1 signaling, or lower reducing equivalents partially suppressed the lethality caused by mutant lamins. Moreover, treatment of flies with pamoic acid, a compound that inhibits the NADPH-producing malic enzyme, partially suppressed lethality. Taken together, these studies have identified multiple new factors as potential therapeutic targets for LMNA-associated muscular dystrophy.

6.
PLoS One ; 12(5): e0176796, 2017.
Article in English | MEDLINE | ID: mdl-28472069

ABSTRACT

The transient receptor potential vallinoid type 4 (TRPV4) is a calcium entry channel known to modulate vascular function by mediating endothelium-dependent vasodilation. The present study investigated if isolated cerebral arterial myocytes of the Fawn Hooded hypertensive (FHH) rat, known to display exaggerated KCa channel current activity and impaired myogenic tone, express TRPV4 channels at the transcript and protein level and exhibit TRPV4-like single-channel cationic current activity. Reverse transcription polymerase chain reaction (RT-PCR), Western blot, and immunostaining analysis detected the expression of mRNA transcript and translated protein of TRPV4 channel in FHH rat cerebral arterial myocytes. Patch clamp recording of single-channel current activity identified the presence of a single-channel cationic current with unitary conductance of ~85 pS and ~96 pS at hyperpolarizing and depolarizing potentials, respectively, that was inhibited by the TRPV4 channel antagonist RN 1734 or HC 067074 and activated by the potent TRPV4 channel agonist GSK1016790A. Application of negative pressure via the interior of the patch pipette increased the NPo of the TRPV4-like single-channel cationic current recorded in cell-attached patches at a patch potential of 60 mV that was inhibited by prior application of the TRPV4 channel antagonist RN 1734 or HC 067047. Treatment with the TRPV4 channel agonist GSK1016790A caused concentration-dependent increase in the NPo of KCa single-channel current recorded in cell-attached patches of cerebral arterial myocytes at a patch potential of 40 mV, which was not influenced by pretreatment with the voltage-gated L-type Ca2+ channel blocker nifedipine or the T-type Ca2+ channel blocker Ni2+. These findings demonstrate that FHH rat cerebral arterial myocytes express mRNA transcript and translated protein for TRPV4 channel and display TRPV4-like single-channel cationic current activity that was stretch-sensitive and activation of which increased the open state probability of KCa single-channel current in these arterial myocytes.


Subject(s)
Brain/blood supply , Cerebrovascular Circulation , Hypertension/physiopathology , Muscle, Smooth, Vascular/physiopathology , TRPV Cation Channels/physiology , Animals , Male , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...