Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1201129, 2023.
Article in English | MEDLINE | ID: mdl-37360714

ABSTRACT

A genome-wide association study (GWAS), which uses information on single nucleotide polymorphisms (SNPs) from many accessions, has become a powerful approach to gene identification. A metabolome GWAS (mGWAS), which relies on phenotypic information based on metabolite accumulation, can identify genes that contribute to primary and secondary metabolite contents. In this study, we carried out a mGWAS using seed metabolomic data from Arabidopsis thaliana accessions obtained by liquid chromatography-mass spectrometry to identify SNPs highly associated with the contents of metabolites such as glucosinolates. These SNPs were present in genes known to be involved in glucosinolate biosynthesis, thus confirming the effectiveness of our analysis. We subsequently focused on SNPs detected in an unknown methyltransferase gene associated with N-methylhistidine content. Knockout and overexpression of A. thaliana lines of this gene had significantly decreased and increased N-methylhistidine contents, respectively. We confirmed that the overexpressing line exclusively accumulated histidine methylated at the pi position, not at the tau position. Our findings suggest that the identified methyltransferase gene encodes a key enzyme for N-methylhistidine biosynthesis in A. thaliana.

2.
Plant Cell Physiol ; 64(7): 716-728, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37233612

ABSTRACT

Sesame (Sesamum indicum L.) plants contain large amounts of acteoside, a typical phenylethanoid glycoside (PhG) that exhibits various pharmacological activities. Although there is increasing interest in the biosynthesis of PhGs for improved production, the pathway remains to be clarified. In this study, we established sesame-cultured cells and performed transcriptome analysis of methyl jasmonate (MeJA)-treated cultured cells to identify enzyme genes responsible for glucosylation and acylation in acteoside biosynthesis. Among the genes annotated as UDP-sugar-dependent glycosyltransferase (UGT) and acyltransferase (AT), 34 genes and one gene, respectively, were upregulated by MeJA in accordance with acteoside accumulation. Based on a phylogenetic analysis, five UGT genes (SiUGT1-5) and one AT gene (SiAT1) were selected as candidate genes involved in acteoside biosynthesis. Additionally, two AT genes (SiAT2-3) were selected based on sequence identity. Enzyme assays using recombinant SiUGT proteins revealed that SiUGT1, namely, UGT85AF10, had the highest glucosyltransferase activity among the five candidates against hydroxytyrosol to produce hydroxytyrosol 1-O-glucoside. SiUGT1 also exhibited glucosyltransferase activity against tyrosol to produce salidroside (tyrosol 1-O-glucoside). SiUGT2, namely, UGT85AF11, had similar activity against hydroxytyrosol and tyrosol. Enzyme assay using the recombinant SiATs indicated that SiAT1 and SiAT2 had activity transferring the caffeoyl group to hydroxytyrosol 1-O-glucoside and salidroside (tyrosol 1-O-glucoside) but not to decaffeoyl-acteoside. The caffeoyl group was attached mainly at the 4-position of glucose of hydroxytyrosol 1-O-glucoside, followed by attachment at the 6-position and the 3-position of glucose. Based on our results, we propose an acteoside biosynthetic pathway induced by MeJA treatment in sesame.


Subject(s)
Sesamum , Sesamum/metabolism , Glycosyltransferases/genetics , Sugars , Phylogeny , Glucosides , Glycosides/metabolism , Recombinant Proteins/genetics , Glucose , Glucosyltransferases/metabolism , Uridine Diphosphate
3.
Plant Biotechnol (Tokyo) ; 40(1): 113-116, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-38213929

ABSTRACT

Pea (Pisum sativum) is an agriculturally important leguminous crop cultivated worldwide. It is also the plant from which phytoalexin was isolated for the first time. Several studies have investigated gene functions using pea hairy root culture systems. However, the procedures for producing hairy roots are relatively complicated and only a few pea cultivars and Rhizobium strains have been used. In this study, we established a simple method for generating transgenic hairy roots using a pea cultivar and a Rhizobium strain available in Japan. The transformation efficiency for the transgenic hairy roots (approximately 14%) was calculated on the basis of GFP fluorescence because the binary vector used in this study carried a GFP cassette as a marker. Furthermore, we confirmed that the production of the phytoalexin (+)-pisatin was induced by a copper dichloride treatment, indicating that this system can be used to characterize the biosynthesis of (+)-pisatin, which is a compound with a unique pterocarpan structure. Interestingly, some of the hairy roots turned into crown galls during the culture period. In summary, our simple method enables the production of transgenic pea hairy roots using biological materials accessible in Japan. The generated hairy roots can be used to elucidate the molecular mechanisms underlying (+)-pisatin biosynthesis as well as hairy root/crown gall formation.

4.
FEBS Lett ; 595(20): 2608-2615, 2021 10.
Article in English | MEDLINE | ID: mdl-34390592

ABSTRACT

Xanthones are compounds with a diphenyl ether skeleton mainly found in plants and often glycosylated at carbon atoms. Although many C-glycosyltransferases (CGTs) participating in flavone C-glycosylation have been identified, MiCGT from Mangifera indica, adding sugar to an open-chain benzophenone skeleton, is the only identified xanthone biosynthesis-related CGT. Here, we identified two CGTs from Hypericum perforatum that add sugar to the closed-ring xanthone, but not benzophenone. These CGTs catalyze sugar transfer to the C-4 position of norathyriol (1,3,6,7-tetrahydroxyxanthone) to form isomangiferin (1,3,6,7-tetrahydroxyxanthone 4-C-glucoside), a major xanthone C-glucoside. This is the first study to report CGTs that mediate the direct C-glycosylation of xanthone.


Subject(s)
Glycosyltransferases/metabolism , Hypericum/metabolism , Xanthones/metabolism , Amino Acid Sequence , Catalysis , Glycosylation , Glycosyltransferases/chemistry , Phylogeny , Sequence Homology, Amino Acid
5.
Biochem J ; 478(12): 2217-2232, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34032263

ABSTRACT

The phosphorylated pathway of serine biosynthesis is initiated with 3-phosphoglycerate dehydrogenase (PGDH). The liverwort Marchantia polymorpha possesses an amino acid-sensitive MpPGDH which is inhibited by l-serine and activated by five proteinogenic amino acids, while the eudicot Arabidopsis thaliana has amino acid-sensitive AtPGDH1 and AtPGDH3 as well as amino acid-insensitive AtPGDH2. In this study, we analyzed PGDH isozymes of the representative land plants: the monocot Oryza sativa (OsPGDH1-3), basal angiosperm Amborella trichopoda (AmtriPGDH1-2), and moss Physcomitrium (Physcomitrella) patens (PpPGDH1-4). We demonstrated that OsPGDH1, AmtriPGDH1, PpPGDH1, and PpPGDH3 were amino acid-sensitive, whereas OsPGDH2, OsPGDH3, AmtriPGDH2, PpPGDH2, and PpPGDH4 were either sensitive to only some of the six effector amino acids or insensitive to all effectors. This indicates that PGDH sensitivity to effectors has been diversified among isozymes and that the land plant species examined, except for M. polymorpha, possess different isozyme types in terms of regulation. Phylogenetic analysis suggested that the different sensitivities convergently evolved in the bryophyte and angiosperm lineages. Site-directed mutagenesis of AtPGDH1 revealed that Asp538 and Asn556 residues in the ACT domain are involved in allosteric regulation by the effectors. These findings provide insight into the evolution of PGDH isozymes, highlighting the functional diversification of allosteric regulation in land plants.


Subject(s)
Gene Expression Regulation, Plant , Mutation , Phosphoglycerate Dehydrogenase/metabolism , Plant Proteins/metabolism , Serine/biosynthesis , Allosteric Regulation , Amino Acid Sequence , Arabidopsis/enzymology , Bryopsida/enzymology , Marchantia/enzymology , Oryza/enzymology , Phosphoglycerate Dehydrogenase/chemistry , Phosphoglycerate Dehydrogenase/genetics , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Sequence Homology
6.
Plant Biotechnol (Tokyo) ; 37(3): 301-310, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-33088193

ABSTRACT

Most leguminous plants produce (-)-type enantiomers of pterocarpans as the phytoalexin, but pea (Pisum sativum L.) produces the opposite stereoisomer of pterocarpan, (+)-pisatin. Biosynthesis of (-)-pterocarpan skeleton is completely characterized at the molecular level, and pterocarpan synthase (PTS), a dirigent (DIR) domain-containing protein, participates in the last dehydration reaction. Similarly, isoflav-3-ene, a precursor of (+)-pisatin, is likely to be biosynthesized by the DIR-mediated dehydration reaction; however the biosynthesis is still unknown. In the present study, we screened PTS homologs based on RNA-sequence data from (+)-pisatin-producing pea seedlings and demonstrated that one of the candidates encodes isoflav-3-ene synthase (I3S). Real-time PCR analysis revealed that transcripts of I3S, in addition to other genes involved in the (+)-pisatin pathway, transiently accumulated in pea upon elicitation prior to the maximum accumulation of (+)-pisatin. I3S orthologs were also found in soybean and Lotus japonicus that are not known to accumulate (+)-pterocarpan, and the catalytic function of gene products was verified to be I3S by the in vitro enzyme assay. Incubation of the crude extract of elicited soybean cells with isoflav-3-ene yielded coumestrol, suggesting that isoflav-3-ene is a precursor of coumestrol biosynthesis in soybean.

7.
Plant Cell Physiol ; 61(11): 1974-1985, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-32894761

ABSTRACT

Isoflavonoids are commonly found in leguminous plants. Glycitein is one of the isoflavones produced by soybean. The genes encoding the enzymes in the isoflavone biosynthetic pathway have mostly been identified and characterized. However, the gene(s) for isoflavone O-methyltransferase (IOMT), which catalyzes the last step of glycitein biosynthesis, has not yet been identified. In this study, we conducted multi-omics analyses of fungal-inoculated soybean and indicated that glycitein biosynthesis was induced in response to biotic stress. Moreover, we identified a unique type of IOMT, which participates in glycitein biosynthesis. Soybean seedlings were inoculated with Aspergillus oryzae or Rhizopus oligosporus and sampled daily for 8 d. Multi-omics analyses were conducted using liquid chromatography-tandem mass spectrometry and RNA sequencing. Metabolome analysis revealed that glycitein derivatives increased following fungal inoculation. Transcriptome co-expression analysis identified two candidate IOMTs that were co-expressed with the gene encoding flavonoid 6-hydroxylase (F6H), the key enzyme in glycitein biosynthesis. The enzymatic assay of the two IOMTs using respective recombinant proteins showed that one IOMT, named as GmIOMT1, produced glycitein. Unlike other IOMTs, GmIOMT1 belongs to the cation-dependent OMT family and exhibited the highest activity with Zn2+ among cations tested. Moreover, we demonstrated that GmIOMT1 overexpression increased the levels of glycitein derivatives in soybean hairy roots when F6H was co-expressed. These results strongly suggest that GmIOMT1 participates in inducing glycitein biosynthesis in response to biotic stress.


Subject(s)
Glycine max/enzymology , Methyltransferases/metabolism , Plant Proteins/physiology , Gas Chromatography-Mass Spectrometry , Gene Expression Profiling , Gene Expression Regulation, Plant , Isoflavones/biosynthesis , Metabolic Networks and Pathways , Metabolomics , Methyltransferases/genetics , Methyltransferases/physiology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Analysis, RNA , Glycine max/genetics , Glycine max/physiology , Stress, Physiological
8.
Plant Cell Physiol ; 58(2): 398-408, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28394400

ABSTRACT

Pterocarpan forms the basic structure of leguminous phytoalexins, and most of the isoflavonoid pathway genes encoding the enzymes responsible for its biosynthesis have been identified. However, the last step of pterocarpan biosynthesis is a ring closure reaction, and the enzyme that catalyzes this step, 2'-hydroxyisoflavanol 4,2'-dehydratase or pterocarpan synthase (PTS), remains as an unidentified 'missing link'. This last ring formation is assumed to be the key step in determining the stereochemistry of pterocarpans, which plays a role in their antimicrobial activity. In this study, a cDNA clone encoding PTS from Glycyrrhiza echinata (GePTS1) was identified through functional expression fractionation screening of a cDNA library, which requires no sequence information, and orthologs from soybean (GmPTS1) and Lotus japonicus (LjPTS1) were also identified. These proteins were heterologously expressed in Escherichia coli and biochemically characterized. Surprisingly, the proteins were found to include amino acid motifs characteristic of dirigent proteins, some of which control stereospecific phenoxy radical coupling in lignan biosynthesis. The stereospecificity of substrates and products was examined using four substrate stereoisomers with hydroxy and methoxy derivatives at C-4'. The results showed that the 4R configuration was essential for the PTS reaction, and (-)- and (+)-pterocarpans were produced depending on the stereochemistry at C-3. In suspension-cultured soybean cells, levels of the GmPTS1 transcript increased temporarily prior to the peak in phytoalexin accumulation, strongly supporting the possible involvement of PTS in pterocarpan biosynthesis.


Subject(s)
Glycyrrhiza/metabolism , Hydro-Lyases/metabolism , Plant Proteins/metabolism , Pterocarpans/metabolism , DNA, Complementary , Hydro-Lyases/genetics , Isoflavones/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plant Proteins/genetics , Sesquiterpenes/metabolism , Phytoalexins
SELECTION OF CITATIONS
SEARCH DETAIL
...