Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
2.
Physiol Rep ; 11(15): e15779, 2023 08.
Article in English | MEDLINE | ID: mdl-37537144

ABSTRACT

Remodeling of cardiac t-tubules in normal and pathophysiological conditions is an important process contributing to the functional performance of the heart. While it is well documented that deterioration of t-tubule network associated with various pathological conditions can be reversed under certain conditions, the mechanistic understanding of the recovery process is essentially lacking. Accordingly, in this study we investigated some aspects of the recovery of t-tubules after experimentally-induced detubulation. T-tubules of isolated mouse ventricular myocytes were first sealed using osmotic shock approach, and their recovery under various experimental conditions was then characterized using electrophysiologic and imaging techniques. The data show that t-tubule recovery is a strongly temperature-dependent process involving reopening of previously collapsed t-tubular segments. T-tubule recovery is slowed by (1) metabolic inhibition of cells, (2) reducing influx of extracellular Ca2+ as well as by (3) both stabilization and disruption of microtubules. Overall, the data show that t-tubule recovery is a highly dynamic process involving several central intracellular structures and processes and lay the basis for more detailed investigations in this area.


Subject(s)
Myocytes, Cardiac , Sarcolemma , Mice , Animals , Myocytes, Cardiac/metabolism , Sarcolemma/metabolism , Calcium/metabolism , Calcium Signaling/physiology
3.
Eur Heart J ; 44(17): 1560-1570, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37122097

ABSTRACT

BACKGROUND: Amyloid plaques and neurofibrillary tangles, the molecular lesions that characterize Alzheimer's disease (AD) and other forms of dementia, are emerging as determinants of proteinopathies 'beyond the brain'. This study aims to establish tau's putative pathophysiological mechanistic roles and potential future therapeutic targeting of tau in heart failure (HF). METHODS AND RESULTS: A mouse model of tauopathy and human myocardial and brain tissue from patients with HF, AD, and controls was employed in this study. Tau protein expression was examined together with its distribution, and in vitro tau-related pathophysiological mechanisms were identified using a variety of biochemical, imaging, and functional approaches. A novel tau-targeting immunotherapy was tested to explore tau-targeted therapeutic potential in HF. Tau is expressed in normal and diseased human hearts, in contradistinction to the current oft-cited observation that tau is expressed specifically in the brain. Notably, the main cardiac isoform is high-molecular-weight (HMW) tau (also known as big tau), and hyperphosphorylated tau segregates in aggregates in HF and AD hearts. As previously described for amyloid-beta, the tauopathy phenotype in human myocardium is of diastolic dysfunction. Perturbation in the tubulin code, specifically a loss of tyrosinated microtubules, emerged as a potential mechanism of myocardial tauopathy. Monoclonal anti-tau antibody therapy improved myocardial function and clearance of toxic aggregates in mice, supporting tau as a potential target for novel HF immunotherapy. CONCLUSION: The study presents new mechanistic evidence and potential treatment for the brain-heart tauopathy axis in myocardial and brain degenerative diseases and ageing.


Subject(s)
Alzheimer Disease , Tauopathies , Humans , Mice , Animals , tau Proteins/chemistry , tau Proteins/genetics , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Tauopathies/metabolism , Tauopathies/pathology , Microtubules/metabolism , Microtubules/pathology , Myocardium/pathology
4.
Front Cell Dev Biol ; 10: 837486, 2022.
Article in English | MEDLINE | ID: mdl-35433678

ABSTRACT

A proliferated and post-translationally modified microtubule network underlies cellular growth in cardiac hypertrophy and contributes to contractile dysfunction in heart failure. Yet how the heart achieves this modified network is poorly understood. Determining how the "tubulin code"-the permutations of tubulin isoforms and post-translational modifications-is rewritten upon cardiac stress may provide new targets to modulate cardiac remodeling. Further, while tubulin can autoregulate its own expression, it is unknown if autoregulation is operant in the heart or tuned in response to stress. Here we use heart failure patient samples and murine models of cardiac remodeling to interrogate transcriptional, autoregulatory, and post-translational mechanisms that contribute to microtubule network remodeling at different stages of heart disease. We find that autoregulation is operant across tubulin isoforms in the heart and leads to an apparent disconnect in tubulin mRNA and protein levels in heart failure. We also find that within 4 h of a hypertrophic stimulus and prior to cardiac growth, microtubule detyrosination is rapidly induced to help stabilize the network. This occurs concomitant with rapid transcriptional and autoregulatory activation of specific tubulin isoforms and microtubule motors. Upon continued hypertrophic stimulation, there is an increase in post-translationally modified microtubule tracks and anterograde motors to support cardiac growth, while total tubulin content increases through progressive transcriptional and autoregulatory induction of tubulin isoforms. Our work provides a new model for how the tubulin code is rapidly rewritten to establish a proliferated, stable microtubule network that drives cardiac remodeling, and provides the first evidence of tunable tubulin autoregulation during pathological progression.

5.
Annu Rev Physiol ; 84: 257-283, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34614374

ABSTRACT

Microtubules are essential cytoskeletal elements found in all eukaryotic cells. The structure and composition of microtubules regulate their function, and the dynamic remodeling of the network by posttranslational modifications and microtubule-associated proteins generates diverse populations of microtubules adapted for various contexts. In the cardiomyocyte, the microtubules must accommodate the unique challenges faced by a highly contractile, rigidly structured, and long-lasting cell. Through their canonical trafficking role and positioning of mRNA, proteins, and organelles, microtubules regulate essential cardiomyocyte functions such as electrical activity, calcium handling, protein translation, and growth. In a more specialized role, posttranslationally modified microtubules form load-bearing structures that regulate myocyte mechanics and mechanotransduction. Modified microtubules proliferate in cardiovascular diseases, creating stabilized resistive elements that impede cardiomyocyte contractility and contribute to contractile dysfunction. In this review, we highlight the most exciting new concepts emerging from recent studies into canonical and noncanonical roles of cardiomyocyte microtubules.


Subject(s)
Mechanotransduction, Cellular , Myocytes, Cardiac , Cytoskeleton/metabolism , Humans , Microtubules/genetics , Microtubules/metabolism , Myocytes, Cardiac/metabolism , Protein Processing, Post-Translational
6.
Nat Commun ; 12(1): 1547, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707436

ABSTRACT

Hypertension, exercise, and pregnancy are common triggers of cardiac remodeling, which occurs primarily through the hypertrophy of individual cardiomyocytes. During hypertrophy, stress-induced signal transduction increases cardiomyocyte transcription and translation, which promotes the addition of new contractile units through poorly understood mechanisms. The cardiomyocyte microtubule network is also implicated in hypertrophy, but via an unknown role. Here, we show that microtubules are indispensable for cardiac growth via spatiotemporal control of the translational machinery. We find that the microtubule motor Kinesin-1 distributes mRNAs and ribosomes along microtubule tracks to discrete domains within the cardiomyocyte. Upon hypertrophic stimulation, microtubules redistribute mRNAs and new protein synthesis to sites of growth at the cell periphery. If the microtubule network is disrupted, mRNAs and ribosomes collapse around the nucleus, which results in mislocalized protein synthesis, the rapid degradation of new proteins, and a failure of growth, despite normally increased translation rates. Together, these data indicate that mRNAs and ribosomes are actively transported to specific sites to facilitate local translation and assembly of contractile units, and suggest that properly localized translation - and not simply translation rate - is a critical determinant of cardiac hypertrophy. In this work, we find that microtubule based-transport is essential to couple augmented transcription and translation to productive cardiomyocyte growth during cardiac stress.


Subject(s)
Cardiomegaly/pathology , Microtubules/metabolism , Myocytes, Cardiac/pathology , Protein Biosynthesis/physiology , RNA, Messenger/metabolism , Ribosomes/metabolism , Animals , Atrial Remodeling/physiology , Biological Transport/physiology , Cells, Cultured , Humans , Kinesins/metabolism , Male , Mice , Mice, Inbred C57BL , Rats , Signal Transduction/physiology , Ventricular Remodeling/physiology
7.
Am J Physiol Heart Circ Physiol ; 319(2): H410-H421, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32648820

ABSTRACT

Cardiac t tubules undergo significant remodeling in various pathological and experimental conditions, which can be associated with mechanical or osmotic stress. In particular, it has been shown that removal of hyposmotic stress can lead to sealing of t tubules. However, the mechanisms underlying the sealing process remain essentially unknown. In this study we used dextran trapping assay to demonstrate that in adult mouse cardiomyocytes, t-tubular sealing can also be induced by hyperosmotic challenge and that both hypo- and hyperosmotic sealing display a clear threshold behavior requiring ≈100 mosmol/L minimal stress. Importantly, during both hypo- and hyperosmotic challenges, the sealing of t tubules occurs only during the shrinking phase. Analysis of the time course of t-tubular remodeling following removal of hyposmotic stress shows that t tubules become sealed essentially instantly, well before any significant reduction in cell size can be observed. Overall, the data support the hypothesis that the critical event in the process of t-tubular sealing during osmotic challenges is detachment (peeling) of the membrane from the underlying cytoskeleton due to suprathreshold stress.NEW & NOTEWORTHY This study provides new insights into how t-tubular membranes respond to osmotic forces. In particular, the data show that osmotically induced sealing of cardiac t tubules is a threshold phenomenon initiated by detachment of t-tubular membrane from the underlying cytoskeleton. The findings are consistent with the hypothesis that final sealing of t tubules is driven by negative hydrostatic intracellular pressure coincident with cell shrinking.


Subject(s)
Cell Membrane/pathology , Cell Size , Cytoskeleton/pathology , Myocytes, Cardiac/pathology , Osmotic Pressure , Vacuoles/pathology , Animals , Cell Membrane/metabolism , Cytoskeleton/metabolism , Female , Male , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Time Factors , Vacuoles/metabolism
8.
Circ Res ; 126(3): e10-e26, 2020 01 31.
Article in English | MEDLINE | ID: mdl-31822208

ABSTRACT

Rationale: Mechanical forces are transduced to nuclear responses via the linkers of the nucleoskeleton and cytoskeleton (LINC) complex, which couples the cytoskeleton to the nuclear lamina and associated chromatin. While disruption of the LINC complex can cause cardiomyopathy, the relevant interactions that bridge the nucleoskeleton to cytoskeleton are poorly understood in the cardiomyocyte, where cytoskeletal organization is unique. Furthermore, while microtubules and desmin intermediate filaments associate closely with cardiomyocyte nuclei, the importance of these interactions is unknown. Objective: Here, we sought to determine how cytoskeletal interactions with the LINC complex regulate nuclear homeostasis in the cardiomyocyte. Methods and Results: To this end, we acutely disrupted the LINC complex, microtubules, actin, and intermediate filaments and assessed the consequences on nuclear morphology and genome organization in rat ventricular cardiomyocytes via a combination of super-resolution imaging, biophysical, and genomic approaches. We find that a balance of dynamic microtubules and desmin intermediate filaments is required to maintain nuclear shape and the fidelity of the nuclear envelope and lamina. Upon depletion of desmin (or nesprin [nuclear envelope spectrin repeat protein]-3, its binding partner in the LINC complex), polymerizing microtubules collapse the nucleus and drive infolding of the nuclear membrane. This results in DNA damage, a loss of genome organization, and broad transcriptional changes. The collapse in nuclear integrity is concomitant with compromised contractile function and may contribute to the pathophysiological changes observed in desmin-related myopathies. Conclusions: Disrupting the tethering of desmin to the nucleus results in a loss of nuclear homeostasis and rapid alterations to cardiomyocyte function. Our data suggest that a balance of forces imposed by intermediate filaments and microtubules is required to maintain nuclear structure and genome organization in the cardiomyocyte.


Subject(s)
Actin Cytoskeleton/metabolism , Microtubules/metabolism , Myocytes, Cardiac/metabolism , Nuclear Matrix/metabolism , Actin Cytoskeleton/ultrastructure , Animals , Cells, Cultured , Desmin/genetics , Desmin/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Microtubules/ultrastructure , Myocytes, Cardiac/ultrastructure , Nuclear Matrix/ultrastructure , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Rats , Rats, Sprague-Dawley
9.
Front Physiol ; 9: 1516, 2018.
Article in English | MEDLINE | ID: mdl-30483142

ABSTRACT

Efficient excitation-contraction coupling in ventricular myocytes depends critically on the presence of the t-tubular network. It has been recently demonstrated that cholesterol, a major component of the lipid bilayer, plays an important role in long-term maintenance of the integrity of t-tubular system although mechanistic understanding of underlying processes is essentially lacking. Accordingly, in this study we investigated the contribution of membrane cholesterol to t-tubule remodeling in response to acute hyposmotic stress. Experiments were performed using isolated left ventricular cardiomyocytes from adult mice. Depletion and restoration of membrane cholesterol was achieved by applying methyl-ß-cyclodextrin (MßCD) and water soluble cholesterol (WSC), respectively, and t-tubule remodeling in response to acute hyposmotic stress was assessed using fluorescent dextran trapping assay and by measuring t-tubule dependent IK1 tail current (IK1,tail). The amount of dextran trapped in t-tubules sealed in response to stress was significantly increased when compared to control cells, and reintroduction of cholesterol to cells treated with MßCD restored the amount of trapped dextran to control values. Alternatively, application of WSC to normal cells significantly reduced the amount of trapped dextran further suggesting the protective effect of cholesterol. Importantly, modulation of membrane cholesterol (without osmotic stress) led to significant changes in various parameters of IK1, tail strongly suggesting significant but essentially hidden remodeling of t-tubules prior to osmotic stress. Results of this study demonstrate that modulation of the level of membrane cholesterol has significant effects on the susceptibility of cardiac t-tubules to acute hyposmotic stress.

10.
Nanotechnology ; 29(30): 305702, 2018 Jul 27.
Article in English | MEDLINE | ID: mdl-29726405

ABSTRACT

The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm-2) and low contact resistivity (2.2 × 10-4 Ω cm2).

11.
Biophys J ; 114(2): 437-449, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29401441

ABSTRACT

Cardiac t-tubules (TTs) form a network of complex surface membrane invaginations that is essential for proper excitation-contraction coupling. Although electron and optical microscopy studies provided a wealth of important information about the structure of TTs, assessing their functional properties remains a challenge. In this study, we investigated the diffusional accessibility of TTs in intact isolated adult mouse ventricular myocytes using, to our knowledge, a novel fluorescence-based assay. In this approach, a small part of TTs is first locally filled with fluorescent dextran and then its diffusion out of TTs is monitored after rapid removal of extracellular dextran. In normal cells, diffusion of 3 kDa dextran is characterized by an average time constant of 3.9 ± 1.2 s with the data ranging from 1.8 to 10.5 s. The data are consistent with essentially free diffusion of dextran in TTs although measurable contribution of binding is also evident. TT fluorescence is abolished in cells treated with high concentration of formamide or after hyposmotic stress. Importantly, the assay we use allows for quantitative, repetitive measurements of subtle dynamic changes in TT structure of the same cell that are not possible to observe with other approaches. In particular, dextran diffusion rate decreases two-to-threefold during cell swelling, suggesting significant structural remodeling of TTs. Computer modeling shows that diffusional accessibility and electrical properties of TTs are primarily determined by the constrictions and dilations of individual TTs and that, from a functional perspective, TTs cannot be considered as a network of cylinders of the same average diameter. Constriction/dilation model of cardiac TTs is in a quantitative agreement with previous high-resolution microscopy studies of TT structure and alternative measurements of diffusional and electrical time constants of TTs. The data also show that the apparent electrical length constant of cardiac TTs is likely several-fold smaller than that estimated in earlier studies.


Subject(s)
Cell Membrane/metabolism , Electrophysiological Phenomena , Mechanical Phenomena , Animals , Biomechanical Phenomena , Dextrans/metabolism , Diffusion , Female , Male , Mice , Models, Cardiovascular , Myocytes, Cardiac/cytology , Osmosis
12.
Proc Natl Acad Sci U S A ; 113(24): 6773-8, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27247394

ABSTRACT

Cantu syndrome (CS) is caused by gain-of-function (GOF) mutations in genes encoding pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) KATP channel subunits. We show that patients with CS, as well as mice with constitutive (cGOF) or tamoxifen-induced (icGOF) cardiac-specific Kir6.1 GOF subunit expression, have enlarged hearts, with increased ejection fraction and increased contractility. Whole-cell voltage-clamp recordings from cGOF or icGOF ventricular myocytes (VM) show increased basal L-type Ca(2+) current (LTCC), comparable to that seen in WT VM treated with isoproterenol. Mice with vascular-specific expression (vGOF) show left ventricular dilation as well as less-markedly increased LTCC. Increased LTCC in KATP GOF models is paralleled by changes in phosphorylation of the pore-forming α1 subunit of the cardiac voltage-gated calcium channel Cav1.2 at Ser1928, suggesting enhanced protein kinase activity as a potential link between increased KATP current and CS cardiac pathophysiology.


Subject(s)
Calcium Channels, L-Type/metabolism , Cardiomegaly/metabolism , Heart Ventricles/metabolism , Hypertrichosis/metabolism , KATP Channels/metabolism , Myocardial Contraction , Myocytes, Cardiac/metabolism , Osteochondrodysplasias/metabolism , Sulfonylurea Receptors/metabolism , Animals , Calcium Channels, L-Type/genetics , Calcium Signaling/drug effects , Calcium Signaling/genetics , Cardiomegaly/genetics , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Female , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Humans , Hypertrichosis/genetics , Hypertrichosis/pathology , Hypertrichosis/physiopathology , Isoproterenol/pharmacology , KATP Channels/genetics , Male , Mice , Mice, Transgenic , Myocytes, Cardiac/pathology , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Osteochondrodysplasias/physiopathology , Sulfonylurea Receptors/genetics
13.
Am J Physiol Heart Circ Physiol ; 311(1): H229-38, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27208165

ABSTRACT

Cardiac t-tubules are critical for efficient excitation-contraction coupling but become significantly remodeled during various stress conditions. However, the mechanisms by which t-tubule remodeling occur are poorly understood. Recently, we demonstrated that recovery of mouse ventricular myocytes after hyposmotic shock is associated with t-tubule sealing. In this study, we found that the application of Small Membrane Permeable Molecules (SMPM) such as DMSO, formamide and acetamide upon washout of hyposmotic solution significantly reduced the amount of extracellular dextran trapped within sealed t-tubules. The SMPM protection displayed sharp biphasic concentration dependence that peaks at ∼140 mM leading to >3- to 4-fold reduction in dextran trapping. Consistent with these data, detailed analysis of the effects of DMSO showed that the magnitude of normalized inward rectifier tail current (IK1,tail), an electrophysiological marker of t-tubular integrity, was increased ∼2-fold when hyposmotic stress was removed in the presence of 1% DMSO (∼140 mM). Analysis of dynamics of cardiomyocytes shrinking during resolution of hyposmotic stress revealed only minor increase in shrinking rate in the presence of 1% DMSO, and cell dimensions returned fully to prestress values in both control and DMSO groups. Application and withdrawal of 10% DMSO in the absence of preceding hyposmotic shock induced classical t-tubule sealing. This suggests that the biphasic concentration dependence originated from an increase in secondary t-tubule sealing when high SMPM concentrations are removed. Overall, the data suggest that SMPM protect against sealing of t-tubules following hyposmotic stress, likely through membrane modification and essentially independent of their osmotic effects.


Subject(s)
Acetamides/pharmacology , Cell Membrane Permeability , Cell Membrane/drug effects , Dimethyl Sulfoxide/pharmacology , Formamides/pharmacology , Myocytes, Cardiac/drug effects , Osmotic Pressure , Acetamides/chemistry , Acetamides/metabolism , Animals , Cell Membrane/metabolism , Dextrans/metabolism , Dimethyl Sulfoxide/chemistry , Dimethyl Sulfoxide/metabolism , Dose-Response Relationship, Drug , Excitation Contraction Coupling/drug effects , Female , Formamides/chemistry , Formamides/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/drug effects , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Male , Membrane Potentials , Mice, Inbred C57BL , Molecular Weight , Myocardial Contraction/drug effects , Myocytes, Cardiac/metabolism
14.
Heart Rhythm ; 12(11): 2316-24, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26142302

ABSTRACT

BACKGROUND: Gain-of-function (GOF) mutations in the KATP channel subunits Kir6.1 and SUR2 cause Cantu syndrome (CS), a disease characterized by multiple cardiovascular abnormalities. OBJECTIVE: The purpose of this study was to better determine the electrophysiologic consequences of such GOF mutations in the heart. METHODS: We generated transgenic mice (Kir6.1-GOF) expressing ATP-insensitive Kir6.1[G343D] subunits under α-myosin heavy chain (α-MHC) promoter control, to target gene expression specifically in cardiomyocytes, and performed patch-clamp experiments on isolated ventricular myocytes and invasive electrophysiology on anesthetized mice. RESULTS: In Kir6.1-GOF ventricular myocytes, KATP channels showed decreased ATP sensitivity but no significant change in current density. Ambulatory ECG recordings on Kir6.1-GOF mice revealed AV nodal conduction abnormalities and junctional rhythm. Invasive electrophysiologic analyses revealed slowing of conduction and conduction failure through the AV node but no increase in susceptibility to atrial or ventricular ectopic activity. Surface ECGs recorded from CS patients also demonstrated first-degree AV block and fascicular block. CONCLUSION: The primary electrophysiologic consequence of cardiac KATP GOF is on the conduction system, particularly the AV node, resulting in conduction abnormalities in CS patients who carry KATP GOF mutations.


Subject(s)
Atrioventricular Block/genetics , Cardiomegaly/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , Gene Expression Regulation, Developmental , Hypertrichosis/genetics , KATP Channels/genetics , Osteochondrodysplasias/genetics , Animals , Brugada Syndrome/genetics , Cardiac Conduction System Disease , Cardiomegaly/diagnostic imaging , Cells, Cultured , Child, Preschool , Disease Models, Animal , Echocardiography, Doppler , Electrocardiography , Electrophysiological Phenomena/genetics , Humans , Hypertrichosis/diagnostic imaging , Male , Mice , Mice, Transgenic , Mutation , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Osteochondrodysplasias/diagnostic imaging , Random Allocation , Rare Diseases , Sampling Studies
15.
Proc Natl Acad Sci U S A ; 111(45): 16029-34, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-25349429

ABSTRACT

The mechanistic basis for why inflammation is simultaneously both deleterious and essential for tissue repair is not fully understood. Recently, a new paradigm has emerged: Organs are replete with resident macrophages of embryonic origin distinct from monocyte-derived macrophages. This added complexity raises the question of whether distinct immune cells drive inflammatory and reparative activities after injury. Previous work has demonstrated that the neonatal heart has a remarkable capacity for tissue repair compared with the adult heart, offering an ideal context to examine these concepts. We hypothesized that unrecognized differences in macrophage composition is a key determinant of cardiac tissue repair. Using a genetic model of cardiomyocyte ablation, we demonstrated that neonatal mice expand a population of embryonic-derived resident cardiac macrophages, which generate minimal inflammation and promote cardiac recovery through cardiomyocyte proliferation and angiogenesis. During homeostasis, the adult heart contains embryonic-derived macrophages with similar properties. However, after injury, these cells were replaced by monocyte-derived macrophages that are proinflammatory and lacked reparative activities. Inhibition of monocyte recruitment to the adult heart preserved embryonic-derived macrophage subsets, reduced inflammation, and enhanced tissue repair. These findings indicate that embryonic-derived macrophages are key mediators of cardiac recovery and suggest that therapeutics targeting distinct macrophage lineages may serve as novel treatments for heart failure.


Subject(s)
Embryo, Mammalian/metabolism , Macrophages/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Recovery of Function , Ventricular Remodeling , Animals , Inflammation/metabolism , Inflammation/therapy , Mice , Myocytes, Cardiac/transplantation , Regeneration
16.
J Cell Sci ; 127(Pt 9): 2106-19, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24569881

ABSTRACT

The copy number of membrane proteins at the cell surface is tightly regulated. Many ion channels and receptors present retrieval motifs to COPI vesicle coats and are retained in the early secretory pathway. In some cases, the interaction with COPI is prevented by binding to 14-3-3 proteins. However, the functional significance of this antagonism between COPI and 14-3-3 in terminally differentiated cells is unknown. Here, we show that ATP-sensitive K(+) (KATP) channels, which are composed of Kir6.2 and SUR1 subunits, are stalled in the Golgi complex of ventricular, but not atrial, cardiomyocytes. Upon sustained ß-adrenergic stimulation, which leads to activation of protein kinase A (PKA), SUR1-containing channels reach the plasma membrane of ventricular cells. We show that PKA-dependent phosphorylation of the C-terminus of Kir6.2 decreases binding to COPI and, thereby, silences the arginine-based retrieval signal. Thus, activation of the sympathetic nervous system releases this population of KATP channels from storage in the Golgi and, hence, might facilitate the adaptive response to metabolic challenges.


Subject(s)
KATP Channels/metabolism , Sulfonylurea Receptors/metabolism , 14-3-3 Proteins/metabolism , Animals , Blotting, Western , Cells, Cultured , Chromatography, Affinity , Electrophysiology , Fluorescent Antibody Technique, Indirect , Immunoprecipitation , Male , Mice , Mice, Knockout , Potassium Channels, Inwardly Rectifying/metabolism , Protein Transport/physiology
17.
PLoS One ; 8(12): e82979, 2013.
Article in English | MEDLINE | ID: mdl-24349409

ABSTRACT

Fibroblast growth factors (FGFs) and their receptors are highly conserved signaling molecules that have been implicated in postnatal cardiac remodeling. However, it is not known whether cardiomyocyte-expressed FGF receptors are necessary or sufficient for ventricular remodeling in the adult heart. To determine whether cardiomyocytes were competent to respond to an activated FGF receptor, and to determine if this signal would result in the development of hypertrophy, we engineered a doxycycline (DOX)-inducible, cardiomyocyte-specific, constitutively active FGF receptor mouse model (αMHC-rtTA, TRE-caFgfr1-myc). Echocardiographic and hemodynamic analysis indicated that acute expression of caFGFR1 rapidly and directly increased cardiac contractility, while chronic expression resulted in significant hypertrophy with preservation of systolic function. Subsequent histologic analysis showed increased cardiomyocyte cross-sectional area and regions of myocyte disarray and fibrosis, classic features of hypertrophic cardiomyopathy (HCM). Analysis of downstream pathways revealed a lack of clear activation of classical FGF-mediated signaling pathways, but did demonstrate a reduction in Serca2 expression and troponin I phosphorylation. Isolated ventricular myocytes showed enhanced contractility and reduced relaxation, an effect that was partially reversed by inhibition of actin-myosin interactions. We conclude that adult cardiomyocytes are competent to transduce FGF signaling and that FGF signaling is sufficient to promote increased cardiomyocyte contractility in vitro and in vivo through enhanced intrinsic actin-myosin interactions. Long-term, FGFR overexpression results in HCM with a dynamic outflow tract obstruction, and may serve as a unique model of HCM.


Subject(s)
Cardiomegaly/metabolism , Cardiomegaly/physiopathology , Myocardial Contraction , Myocytes, Cardiac/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction , Animals , Cardiomegaly/diagnostic imaging , Cardiomegaly/genetics , Cardiomegaly/pathology , Disease Models, Animal , Echocardiography , Hemodynamics/genetics , Mice , Mice, Transgenic , Myocytes, Cardiac/pathology , Receptor, Fibroblast Growth Factor, Type 1/genetics , Ventricular Remodeling/genetics
18.
J Am Heart Assoc ; 2(4): e000365, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-23974906

ABSTRACT

BACKGROUND: KATP channels, assembled from pore-forming (Kir6.1 or Kir6.2) and regulatory (SUR1 or SUR2) subunits, link metabolism to excitability. Loss of Kir6.2 results in hypoglycemia and hyperinsulinemia, whereas loss of Kir6.1 causes Prinzmetal angina-like symptoms in mice. Conversely, overactivity of Kir6.2 induces neonatal diabetes in mice and humans, but consequences of Kir6.1 overactivity are unknown. METHODS AND RESULTS: We generated transgenic mice expressing wild-type (WT), ATP-insensitive Kir6.1 [Gly343Asp] (GD), and ATP-insensitive Kir6.1 [Gly343Asp,Gln53Arg] (GD-QR) subunits, under Cre-recombinase control. Expression was induced in smooth muscle cells by crossing with smooth muscle myosin heavy chain promoter-driven tamoxifen-inducible Cre-recombinase (SMMHC-Cre-ER) mice. Three weeks after tamoxifen induction, we assessed blood pressure in anesthetized and conscious animals, as well as contractility of mesenteric artery smooth muscle and KATP currents in isolated mesenteric artery myocytes. Both systolic and diastolic blood pressures were significantly reduced in GD and GD-QR mice but normal in mice expressing the WT transgene and elevated in Kir6.1 knockout mice as well as in mice expressing dominant-negative Kir6.1 [AAA] in smooth muscle. Contractile response of isolated GD-QR mesenteric arteries was blunted relative to WT controls, but nitroprusside relaxation was unaffected. Basal KATP conductance and pinacidil-activated conductance were elevated in GD but not in WT myocytes. CONCLUSIONS: KATP overactivity in vascular muscle can lead directly to reduced vascular contractility and lower blood pressure. We predict that gain of vascular KATP function in humans would lead to a chronic vasodilatory phenotype, as indeed has recently been demonstrated in Cantu syndrome.


Subject(s)
Blood Pressure , Hypotension/metabolism , KATP Channels/metabolism , Muscle, Smooth, Vascular/metabolism , Animals , Blood Pressure/drug effects , Blood Pressure/genetics , Dose-Response Relationship, Drug , Genetic Predisposition to Disease , Hypotension/genetics , Hypotension/physiopathology , KATP Channels/genetics , Membrane Potentials , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiopathology , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Mice, Transgenic , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiopathology , Mutation , Phenotype , Potassium/metabolism , Vasoconstriction , Vasodilation , Vasodilator Agents/pharmacology
19.
J Mol Cell Cardiol ; 62: 90-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23624089

ABSTRACT

ATP-sensitive potassium channel (KATP) activation can drastically shorten action potential duration (APD) in metabolically compromised myocytes. We showed previously that SUR1 with Kir6.2 forms the functional channel in mouse atria while Kir6.2 and SUR2A predominate in ventricles. SUR1 is more sensitive to metabolic stress than SUR2A, raising the possibility that KATP in atria and ventricles may respond differently to metabolic stress. Action potential duration (APD) and calcium transient duration (CaTD) were measured simultaneously in both atria and ventricles by optical mapping of the posterior surface of Langendorff-perfused hearts from C57BL wild-type (WT; n=11), Kir6.2(-/-) (n=5), and SUR1(-/-) (n=6) mice during metabolic inhibition (MI, 0mM glucose+2mM sodium cyanide). After variable delay, MI led to significant shortening of APD in WT hearts. On average, atrial APD shortened by 60.5 ± 2.7% at 13.1 ± 2.1 min (n=6, p<0.01) after onset of MI. Ventricular APD shortening (56.4 ± 10.0% shortening at 18.2 ± 1.8 min) followed atrial APD shortening. In SUR1(-/-) hearts (n=6), atrial APD shortening was abolished, but ventricular shortening (65.0 ± 15.4% at 25.33 ± 4.48 min, p<0.01) was unaffected. In Kir6.2(-/-) hearts, two disparate responses to MI were observed; 3 of 5 hearts displayed slight shortening of APD in the ventricles (24 ± 3%, p<0.05) and atria (39.0 ± 1.9%, p<0.05) but this shortening occurred later and to much less extent than in WT (p<0.05). Marked prolongation of ventricular APD was observed in the remaining hearts (327% and 489% prolongation) and was associated with occurrence of ventricular tachyarrhythmias. The results confirm that Kir6.2 contributes to APD shortening in both atria and ventricle during metabolic stress, and that SUR1 is required for atrial APD shortening while SUR2A is required for ventricular APD shortening. Importantly, the results show that the presence of SUR1-dependent KATP in the atria results in the action potential being more susceptible to metabolically driven shortening than the ventricle.


Subject(s)
KATP Channels/metabolism , Action Potentials/physiology , Animals , Heart Atria/metabolism , Heart Ventricles/metabolism , In Vitro Techniques , KATP Channels/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Sulfonylurea Receptors/genetics , Sulfonylurea Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...