Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Care Med ; 43(10): e412-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26035408

ABSTRACT

OBJECTIVES: To investigate mechanisms involved in the regulation of epithelial ion channels and alveolar fluid clearance in hyperoxia-induced lung injury. DESIGN: Laboratory animal experiments. SETTING: Animal care facility procedure room in a medical center. SUBJECTS: Wild-type, STE20/SPS1-related proline/alanine-rich kinase knockout (SPAK(-/-)), and with-no-lysine kinase 4 knockin (WNK4(D561A/+)) mice. INTERVENTIONS: Mice were exposed to room air or 95% hyperoxia for 60 hours. MEASUREMENTS AND MAIN RESULTS: Exposure to hyperoxia for 60 hours increased the lung expression of with-no-lysine kinase 4 and led to STE20/SPS1-related proline/alanine-rich kinase and sodium-potassium-chloride cotransporter phosphorylation, which resulted in the suppression of alveolar fluid clearance and increase of lung edema. WNK4(D561A/+) mice at the baseline presented an abundance of epithelium sodium channel and high levels of STE20/SPS1-related proline/alanine-rich kinase and sodium-potassium-chloride cotransporter phosphorylation. Compared with the wild-type group, hyperoxia caused greater epithelium sodium channel expression in WNK4(D561A/+) mice, but no significant difference in STE20/SPS1-related proline/alanine-rich kinase and sodium-potassium-chloride cotransporter phosphorylation. The functional inactivation of sodium-potassium-chloride cotransporter by gene knockout in SPAK(-/-) mice yielded a lower severity of lung injury and longer animal survival, whereas constitutive expression of with-no-lysine kinase 4 exacerbated the hyperoxia-induced lung injury. Pharmacologic inhibition of sodium-potassium-chloride cotransporter by inhaled furosemide improved animal survival in WNK4(D561A/+) mice. By contrast, inhibition of epithelium sodium channel exacerbated the hyperoxia-induced lung injury and animal death. CONCLUSIONS: With-no-lysine kinase 4 plays a crucial role in the regulation of epithelial ion channels and alveolar fluid clearance, mainly via phosphorylation and activation of STE20/SPS1-related proline/alanine-rich kinase and sodium-potassium-chloride cotransporter.


Subject(s)
Hyperoxia/enzymology , Hyperoxia/physiopathology , Lung Injury/enzymology , Lung Injury/physiopathology , Protein Serine-Threonine Kinases/physiology , Animals , Hyperoxia/complications , Hyperoxia/genetics , Lung Injury/etiology , Lung Injury/genetics , Male , Mice , Phosphorylation
2.
Biochem Biophys Res Commun ; 441(3): 544-9, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24189473

ABSTRACT

Mutations of BSND, which encodes barttin, cause Bartter syndrome type IV. This disease is characterized by salt and fluid loss, hypokalemia, metabolic alkalosis, and sensorineural hearing impairment. Barttin is the ß-subunit of the ClC-K chloride channel, which recruits it to the plasma membranes, and the ClC-K/barttin complex contributes to transepithelial chloride transport in the kidney and inner ear. The retention of mutant forms of barttin in the endoplasmic reticulum (ER) is etiologically linked to Bartter syndrome type IV. Here, we report that treatment with 17-allylamino-17-demethoxygeldanamycin (17-AAG), an Hsp90 inhibitor, enhanced the plasma membrane expression of mutant barttins (R8L and G47R) in Madin-Darby canine kidney cells. Administration of 17-AAG to Bsnd(R8L/R8L) knock-in mice elevated the plasma membrane expression of R8L in the kidney and inner ear, thereby mitigating hypokalemia, metabolic alkalosis, and hearing loss. These results suggest that drugs that rescue ER-retained mutant barttin may be useful for treating patients with Bartter syndrome type IV.


Subject(s)
Bartter Syndrome/drug therapy , Benzoquinones/therapeutic use , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Hearing Loss, Sensorineural/drug therapy , Lactams, Macrocyclic/therapeutic use , Membrane Proteins/metabolism , Animals , Auditory Threshold , Bartter Syndrome/genetics , Bartter Syndrome/physiopathology , Chloride Channels , Dogs , Gene Knock-In Techniques , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/physiopathology , Kidney Tubules/metabolism , Madin Darby Canine Kidney Cells , Membrane Proteins/genetics , Mice , Mice, Mutant Strains
SELECTION OF CITATIONS
SEARCH DETAIL
...