Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 109(1-1): 014213, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38366497

ABSTRACT

We numerically study the anisotropic Turing patterns (TPs) of an activator-inhibitor system described by the reaction-diffusion (RD) equation of Turing, focusing on anisotropic diffusion using the Finsler geometry (FG) modeling technique. In FG modeling, the diffusion coefficients are dynamically generated to be direction dependent owing to an internal degree of freedom (IDOF) and its interaction with the activator and inhibitor. Because of this dynamical diffusion coefficient, FG modeling of the RD equation sharply contrasts with the standard numerical technique in which direction-dependent coefficients are manually assumed. To find the solution of the RD equations in FG modeling, we use a hybrid numerical technique combining the Metropolis Monte Carlo method for IDOF updates and discrete RD equations for steady-state configurations of the activator-inhibitor variables. We find that the newly introduced IDOF and its interaction are a possible origin of spontaneously emergent anisotropic patterns of living organisms, such as zebra and fishes. Moreover, the IDOF makes TPs controllable by external conditions if the IDOF is identified with the direction of cell diffusion accompanied by thermal fluctuations.

2.
Nanomaterials (Basel) ; 12(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35214979

ABSTRACT

Due to their high surface coverage, good adhesion to metal surfaces, and their excellent corrosion resistance, epoxy thermosets are widely used as protective coatings. However, anticorrosion protection of these coatings can be improved against water uptake and can be tuned by changing the chemical nature of the curing agents. In this work, a comparative study has been performed on the water uptake of an epoxy-amine based on bisphenol A diglycidyl ether (DGEBA) cured with an aliphatic amine and the same epoxy initiated with a phosphonium ionic liquid (IL). Thus, the epoxy networks were immersed in saline water solution in a controlled temperature environment. Gravimetric and electric impedance measurements were carried out for a maximum of 3 months. Results were analyzed in order to assess the water diffusion coefficients and water saturation limits. Two models, the Brasher-Kingsbury and a novel mixing rule, were applied on permittivity values. Results highlighted that epoxy-ionic liquid systems are less sensitive to water uptake than conventional epoxy-amine networks. Due to their higher hydrophobic properties the water diffusion coefficient of epoxy-ionic liquid systems are two times less compared to epoxy-amine samples and the water saturation limit is more than four times less. The analysis also shows that the novel mixing rule model proposed here is prone to better estimate the water uptake with accuracy from electrical impedance measurements.

3.
Ultrasonics ; 119: 106629, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34700266

ABSTRACT

Crack closure can cause the underestimation or misdetection of fatigue cracks in ultrasonic testing (UT). Fatigue-crack closure due to an environmental factor, i.e., high temperature, was found in eddy current testing (ECT), which is used to inspect the vicinity of surfaces. However, its effect and countermeasures have yet to be examined in UT. In this study, we examined the fatigue-crack closure induced by heat processing using a surface-acoustic-wave phased array (SAW PA). SAW PA is a phased-array imaging method using Rayleigh waves, which can sensitively visualize defects in the vicinity of surfaces. As a result, the intensity of crack responses visualized by SAW PA markedly decreased after the heat processing of a fatigue-crack specimen. Furthermore, we demonstrated that the combination of SAW PA with a crack opening method, global preheating and local cooling (GPLC), and a load difference phased array (LDPA) is useful for the high-selectivity imaging of closed fatigue cracks. We also discussed a possible mechanism of the fatigue-crack closure induced by heat processing.

4.
Philos Trans A Math Phys Eng Sci ; 378(2182): 20190587, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-32921244

ABSTRACT

This paper describes the detectability of eddy current testing (ECT) using directional eddy current for detection of in-plane fibre waviness in unidirectional carbon fibre reinforced plastic (CFRP) laminate. Three different types of probes, such as circular driving, symmetrical driving and uniform driving probe, were proposed, and the waviness angle was extracted from the contour map of the ECT signal by applying a Canny filter and a Hough transform. By comparing both the waviness angle estimated by ECT and that obtained by an X-ray CT image, the standard deviation (precision) and root mean square error (accuracy) were evaluated to discuss the detectability of these probes. The directional uniform driving probe shows the best detectability and can detect fibre waviness with a waviness angle of more than 2° in unidirectional CFRP. The probe shows a root mean square error of 1.90° and a standard deviation of 4.49° between the actual waviness angle and the angle estimated by ECT. This article is part of the theme issue 'Advanced electromagnetic non-destructive evaluation and smart monitoring'.

5.
Ultrasonics ; 108: 106213, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32615364

ABSTRACT

The accuracy of electro-acoustic energy transfer efficiency (EAETE) model directly determines the optimization results of an electromagnetic acoustic transducer (EMAT). In this study, the EMAT model of SH0 mode generation based on magnetostriction mechanism is re-examined. In the existing magnetostriction-based EMAT (MEMAT) analytical model, an approximate method of dynamic magnetic field was employed. Thus the effects of the tested ferromagnetic materials on the dynamic magnetic field in the air is ignored and the boundary condition between air and material is not exact. As a result, the calculated dynamic magnetic field inside the tested ferromagnetic materials is incorrect, thus leading to the calculation errors of magnetostriction body force and the final EAETE of MEMAT. The rigorous analytical solutions for calculating the dynamic magnetic field are derived based on Maxwell equations and boundary conditions in this study. The prediction results of improved analytical model were consistent with previously reported experimental results. Compared with existing analytical models, the improved model showed the higher prediction accuracy of several parameters, including dynamic magnetic field, magnetostriction force and the EAETE.

6.
Article in English | MEDLINE | ID: mdl-31796394

ABSTRACT

Nondestructive testing for identifying defects on the surface of metal materials is important for industries and infrastructures. The Rayleigh wave is widely used for detecting these surface defects. For replacing piezoelectric transducers with electromagnetic acoustic transducers (EMATs) for the surface inspection of metal materials, this article proposes a new magnet and coil combination consisting of a periodic-permanent-magnet (PPM) and a returned dislocation meander line coil. The returned dislocation meander line coil was developed using a traditional meander line coil, whose wires return from one side to another and shift for a certain distance. A 2-D finite-element simulation was conducted to analyze the performance of the proposed Rayleigh wave EMAT. The simulation results revealed that, compared with a large conventional magnet, the PPM increased the maximum magnetic flux density, and made the magnetic flux density distribution more concentrated on the specimen's surface, particularly below the coil. In the middle part of the coil, the PPM greatly increased the intensity of the horizontal magnetic field. Additionally, the returned dislocation meander line coil made full use of the strong magnetic field below the center of each small magnet and at the adjacent magnets. The designed Rayleigh wave EMAT was fabricated, and the experimental results revealed that the new design of the Rayleigh wave EMAT increased the received signal by 57.9% compared with the conventional Rayleigh wave EMAT.

SELECTION OF CITATIONS
SEARCH DETAIL
...