Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 720: 150077, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38759303

ABSTRACT

Hericenone C is one of the most abundant secondary metabolites derived from Hericium erinaceus, under investigation for medicinal properties. Here, we report that Hericenone C inhibits the second phase of formalin-induced nociceptive behavior in mice. As the second phase is involved in inflammation, in a mechanistic analysis on cultured cells targeting NF-κB response element (NRE): luciferase (Luc)-expressing cells, lipopolysaccharide (LPS)-induced NRE::Luc luciferase activity was found to be significantly inhibited by Hericenone C. Phosphorylation of p65, which is involved in the inflammatory responses of the NF-κB signaling pathway, was also induced by LPS and significantly reduced by Hericenone C. Additionally, in mice, the number of CD11c-positive cells increased in the paw during the peak of the second phase of the formalin test, which decreased upon Hericenone C intake. Our findings confirm the possibility of Hericenone C as a novel therapeutic target for pain-associated inflammation.


Subject(s)
Epidermis , Formaldehyde , Animals , Phosphorylation/drug effects , Mice , Male , Epidermis/metabolism , Epidermis/drug effects , Transcription Factor RelA/metabolism , CD11 Antigens/metabolism , Nociception/drug effects , Humans
2.
Biol Pharm Bull ; 47(3): 641-651, 2024.
Article in English | MEDLINE | ID: mdl-38508744

ABSTRACT

Recently, mitochondrial dysfunction has gained attention as a causative factor in the pathogenesis and progression of age-related macular degeneration (AMD). Mitochondrial damage plays a key role in metabolism and disrupts the balance of intracellular metabolic pathways, such as oxidative phosphorylation (OXPHOS) and glycolysis. In this study, we focused on oxidized low-density lipoprotein (ox-LDL), a major constituent of drusen that accumulates in the retina of patients with AMD, and investigated whether it could be a causative factor for metabolic alterations in retinal pigment epithelial (RPE) cells. We found that prolonged exposure to ox-LDL induced changes in fatty acid ß-oxidation (FAO), OXPHOS, and glycolytic activity and increased the mitochondrial reactive oxygen species production in RPE cells. Notably, the effects on metabolic alterations varied with the concentration and duration of ox-LDL treatment. In addition, we addressed the limitations of using ARPE-19 cells for retinal disease research by highlighting their lower barrier function and FAO activity compared to those of induced pluripotent stem cell-derived RPE cells. Our findings can aid in the elucidation of mechanisms underlying the metabolic alterations in AMD.


Subject(s)
Macular Degeneration , Retinal Pigment Epithelium , Humans , Retinal Pigment Epithelium/metabolism , Lipoproteins, LDL/metabolism , Oxidative Stress , Epithelial Cells , Retinal Pigments/metabolism , Retinal Pigments/pharmacology
3.
Am J Physiol Endocrinol Metab ; 325(5): E552-E561, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37729022

ABSTRACT

Mitochondrial fatty acid ß-oxidation (FAO) plays a key role in energy homeostasis. Several FAO evaluation methods are currently available, but they are not necessarily suitable for capturing the dynamics of FAO in vivo at a cellular-level spatial resolution and seconds-level time resolution. FAOBlue is a coumarin-based probe that undergoes ß-oxidation to produce a fluorescent substrate, 7-hydroxycoumarin-3-(N-(2-hydroxyethyl))-carboxamide (7-HC). After confirming that 7-HC could be specifically detected using multiphoton microscopy at excitation/emission wavelength = 820/415-485 nm, wild-type C57BL/6 mice were randomly divided into control, pemafibrate, fasting (24 or 72 h), and etomoxir groups. These mice received a single intravenous injection of FAOBlue. FAO activities in the liver of these mice were visualized using multiphoton microscopy at 4.2 s/frame. These approaches could visualize the difference in FAO activities between periportal and pericentral hepatocytes in the control, pemafibrate, and fasting groups. FAO velocity, which was expressed by the maximum slope of the fluorescence intensity curve, was accelerated in the pemafibrate and 72-h fasting groups both in the periportal and the pericentral hepatocytes in comparison with the control group. Our approach revealed differences in the FAO activation mode by the two stimuli, i.e., pemafibrate and fasting, with pemafibrate accelerating the time of first detection of FAO-derived fluorescence. No increase in the fluorescence was observed in etomoxir-pretreated mice, confirming that FAOBlue specifically detected FAO in vivo. Thus, FAOBlue is useful for visualizing in vivo liver FAO dynamics at the single-cell-level spatial resolution and seconds-level time resolution.NEW & NOTEWORTHY Fatty acid ß-oxidation (FAO) plays a key role in energy homeostasis. Here, the authors established a strategy for visualizing FAO activity in vivo at the cellular-level spatial resolution and seconds-level time resolution in mice. Quantitative analysis revealed spatiotemporal heterogeneity in hepatic FAO dynamics. Our method is widely applicable because it is simple and uses a multiphoton microscope to observe the FAOBlue-injected mice.


Subject(s)
Butyrates , Mitochondria , Mice , Animals , Mice, Inbred C57BL , Mitochondria/metabolism , Butyrates/metabolism , Oxidation-Reduction , Fatty Acids/metabolism
4.
J Am Chem Soc ; 145(14): 8248-8260, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37011039

ABSTRACT

Detection of metabolic activity enables us to reveal the inherent metabolic state of cells and elucidate mechanisms underlying cellular homeostasis and growth. However, a fluorescence approach for the study of metabolic pathways is still largely unexplored. Herein, we have developed a new chemical probe for the fluorescence-based detection of fatty acid ß-oxidation (FAO), a key process in lipid catabolism, in cells and tissues. This probe serves as a substrate of FAO and forms a reactive quinone methide (QM) as a result of metabolic reactions. The liberated QM is covalently captured by intracellular proteins, and subsequent bio-orthogonal ligation with a fluorophore enables fluorescence analysis. This reaction-based sensing allowed us to detect FAO activity in cells at a desired emission wavelength using diverse analytical techniques including fluorescence imaging, in-gel fluorescence activity-based protein profiling (ABPP), and fluorescence-activated cell sorting (FACS). The probe was able to detect changes in FAO activity induced by chemical modulators in cultured cells. The probe was further employed for fluorescence imaging of FAO in mouse liver tissues and revealed the metabolic heterogeneity of FAO activity in hepatocytes by the combination of FACS and gene expression analysis, highlighting the utility of our probe as a chemical tool for fatty acid metabolism research.


Subject(s)
Fatty Acids , Hepatocytes , Mice , Animals , Oxidation-Reduction , Fluorescence , Hepatocytes/metabolism , Fatty Acids/metabolism
5.
Commun Chem ; 4(1): 104, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-36697807

ABSTRACT

Despite continuous and active development of fluorescent metal-ion probes, their molecular design for ratiometric detection is restricted by the limited choice of available sensing mechanisms. Here we present a multicolor and ratiometric fluorescent sensing platform for metal ions based on the interaction between the metal ion and the aromatic ring of a fluorophore (arene-metal-ion, AM, coordination). Our molecular design provided the probes possessing a 1,9-bis(2'-pyridyl)-2,5,8-triazanonane as a flexible metal ion binding unit attached to a tricyclic fluorophore. This architecture allows to sense various metal ions, such as Zn(II), Cu(II), Cd(II), Ag(I), and Hg(II) with emission red-shifts. We showed that this probe design is applicable to a series of tricyclic fluorophores, which allow ratiometric detection of the metal ions from the blue to the near-infrared wavelengths. X-ray crystallography and theoretical calculations indicate that the coordinated metal ion has van der Waals contact with the fluorophore, perturbing the dye's electronic structure and ring conformation to induce the emission red-shift. A set of the probes was useful for the differential sensing of eight metal ions in a one-pot single titration via principal component analysis. We also demonstrate that a xanthene fluorophore is applicable to the ratiometric imaging of metal ions under live-cell conditions.

6.
Molecules ; 25(9)2020 May 05.
Article in English | MEDLINE | ID: mdl-32380657

ABSTRACT

Self-immolative linker is a useful building block of molecular probes, with broad applications in the fields of enzyme activity analysis, stimuli-responsive material science, and drug delivery. This manuscript presents N-methyl dimethyl methyl (i.e., trimethyl) carbamate as a new class of self-immolative linker for the fluorescence detection of enzyme reactions. The trimethyl carbamate was shown to spontaneously undergo intramolecular cyclization upon formation of a carboxylate group, to liberate a fluorophore with the second time rapid reaction kinetics. Interestingly, the auto-cleavage reaction of trimethyl carbamate was also induced by the formation of hydroxyl and amino groups. Fluorescent probes with a trimethyl carbamate could be applicable for fluorescence monitoring of the enzyme reactions catalyzed by esterase, ketoreductase, and aminotransferase, and for fluorescence imaging of intracellular esterase activity in living cells, hence demonstrating the utility of this new class of self-immolative linker.


Subject(s)
Carbamates/chemical synthesis , Coumarins/chemistry , Fluorescent Dyes/chemical synthesis , A549 Cells , Carbamates/chemistry , Cyclization , Enzyme Assays , Fluorescent Dyes/chemistry , Humans , Molecular Structure
7.
Chem Commun (Camb) ; 56(20): 3023-3026, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32048639

ABSTRACT

Detection of metabolic activity in living cells facilitates the understanding of the cell mechanism. Here, we report a fluorescent probe that can detect fatty acid beta oxidation (FAO) in living cells. This probe is metabolically degraded by the sequential enzyme reactions of FAO and can visualize the FAO activity with turn-on fluorescence.


Subject(s)
Fatty Acids/analysis , Fluorescent Dyes/chemistry , Optical Imaging , Fatty Acids/metabolism , Hep G2 Cells , Humans , Molecular Structure , Oxidation-Reduction
8.
iScience ; 22: 256-268, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31786521

ABSTRACT

Electron microscopy (EM) is a technology that enables visualization of single proteins at a nanometer resolution. However, current protein analysis by EM mainly relies on immunolabeling with gold-particle-conjugated antibodies, which is compromised by large size of antibody, precluding precise detection of protein location in biological samples. Here, we develop a specific chemical labeling method for EM detection of proteins at single-molecular level. Rational design of α-helical peptide tag and probe structure provided a complementary reaction pair that enabled specific cysteine conjugation of the tag. The developed chemical labeling with gold-nanoparticle-conjugated probe showed significantly higher labeling efficiency and detectability of high-density clusters of tag-fused G protein-coupled receptors in freeze-fracture replicas compared with immunogold labeling. Furthermore, in ultrathin sections, the spatial resolution of the chemical labeling was significantly higher than that of antibody-mediated labeling. These results demonstrate substantial advantages of the chemical labeling approach for single protein visualization by EM.

9.
Bioorg Med Chem Lett ; 27(15): 3486-3489, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28576616

ABSTRACT

We report the discovery of a highly reactive peptide tag for the specific cysteine conjugation of proteins. Screening of cysteine-containing peptides using ELISA-type screening yielded a 19-amino acid tag (DCPPPDDAADDAADDAADD), named DCP3 tag, which enabled the rapid and selective labeling of the tag-fused protein with a synthetic zinc complex on the surface of living cells.


Subject(s)
Cysteine/chemistry , Optical Imaging , Peptides/chemistry , Proteins/analysis , Amino Acid Sequence , Coordination Complexes/chemistry , Enzyme-Linked Immunosorbent Assay/methods , HEK293 Cells , Humans , Maltose-Binding Proteins/analysis , Optical Imaging/methods , Receptors, G-Protein-Coupled/analysis , Zinc/chemistry
10.
Chem Sci ; 8(2): 1134-1140, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28451253

ABSTRACT

Hydropersulfide (R-SSH) is an important class of reactive sulfur species (RSS) involved in a variety of physiological processes in mammals. A fluorescent probe capable of real-time detection of hydropersulfide levels in living cells would be a versatile tool to elucidate its roles in cell signalling and redox homeostasis. In this paper, we report a ratiometric fluorescent probe for hydropersulfide sensing, based on a fluorescence resonance energy transfer (FRET) mechanism. This sensing mechanism involves a nucleophilic reaction of a hydropersulfide with the pyronine-unit of the probe, which modulates the intramolecular FRET efficiency to induce a dual-emission change. The reversible nature of this reaction allows us to detect increases and decreases of hydropersulfide levels in a real-time manner. The probe fluorometrically sensed highly reactive hydropersulfides, such as H2S2 and Cys-SSH, while the fluorescence response to biologically abundant cysteine and glutathione was negligible. Taking advantage of the reversible and selective sensing properties, this probe was successfully applied to the ratiometric imaging of concentration dynamics of endogenously produced hydropersulfides in living cells.

11.
Chem Commun (Camb) ; 52(49): 7715-8, 2016 Jun 08.
Article in English | MEDLINE | ID: mdl-27229298

ABSTRACT

A new glutathione (GSH)-responsive traceless tag that facilitates intracellular delivery of small molecule chemical probes has been developed.

12.
Comb Chem High Throughput Screen ; 19(5): 378-83, 2016.
Article in English | MEDLINE | ID: mdl-27055752

ABSTRACT

Control of fluorescent dye localization in live cells is crucial for fluorescence imaging. Here, we describe quantitative structure activity relation (QSAR) models for predicting intracellular localization of fluorescent dyes. For generating the QSAR models, electric charge (Z) calculated by pKa, conjugated bond number (CBN), the largest conjugated fragment (LCF), molecular weight (MW) and log P were used as parameters. We identified the intracellular localization of 119 BODIPY dyes in live NIH3T3 cells, and assessed the accuracy of our models by comparing their predictions with the observed dye localizations. As predicted by the models, no BODIPY dyes localized in nuclei or plasma membranes. The accuracy of the model for localization in fat droplets was 92%, with the models for cytosol and lysosomes showing poorer agreement with observed dye localization, albeit well above chance levels. Overall therefore the utility of QSAR models for predicting dye localization in live cells was clearly demonstrated.


Subject(s)
Fluorescent Dyes/pharmacokinetics , Quantitative Structure-Activity Relationship , Animals , Boron Compounds , Hydrophobic and Hydrophilic Interactions , Intracellular Space/metabolism , Lipid Droplets/metabolism , Mice , NIH 3T3 Cells
13.
Chempluschem ; 81(11): 1209-1215, 2016 Nov.
Article in English | MEDLINE | ID: mdl-31964103

ABSTRACT

Reported is a new fluorescent probe based on boron-dipyrromethene dye (BODIPY) for late endosome staining in live cells. Among the 14 pH-responsive BODIPY-based far-red/near-infrared dyes used, it was found that a (4-methyl-1-piperazinyl)phenyl-substituted BODIPY could stain late endosomes in three different cell lines. This BODIPY dye was applicable for measurement of the fusion time of late endosomes and lysosomes, thereby demonstrating the utility of this dye for functional analyses of late endosomes in live cells.

14.
Bioorg Med Chem Lett ; 24(13): 2855-8, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24835629

ABSTRACT

Selective protein labeling with a small molecular probe is a versatile method for elucidating protein functions under live-cell conditions. In this Letter, we report the design of the binuclear Ni(II)-iminodiacetic acid (IDA) complex for selective recognition and covalent labeling of His-tag-fused proteins. We found that the Ni(II)-IDA complex 1-2Ni(II) binds to the His6-tag (HHHHHH) with a strong binding affinity (Kd=24 nM), the value of which is 16-fold higher than the conventional Ni(II)-NTA complex (Kd=390 nM). The strong binding affinity of the Ni(II)-IDA complex was successfully used in the covalent labeling and fluorescence bioimaging of a His-tag fused GPCR (G-protein coupled receptor) located on the surface of living cells.


Subject(s)
Drug Design , Histidine/chemistry , Imino Acids/chemistry , Nickel/chemistry , Organometallic Compounds/chemistry , Recombinant Fusion Proteins/chemistry , HEK293 Cells , Humans , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/pharmacology , Staining and Labeling , Structure-Activity Relationship
15.
Inorg Chem ; 53(4): 1816-23, 2014 Feb 17.
Article in English | MEDLINE | ID: mdl-24131471

ABSTRACT

Protein-labeling methods serve as essential tools for analyzing functions of proteins of interest under complicated biological conditions such as in live cells. These labeling methods are useful not only to fluorescently visualize proteins of interest in biological systems but also to conduct protein and cell analyses by harnessing the unique functions of molecular probes. Among the various labeling methods available, an appropriate binding pair consisting of a short peptide and a de novo designed small molecular probe has attracted attention because of its wide utility and versatility. Interestingly, most peptide tag/probe pairs exploit metal-ligand coordination interactions as the main binding force responsible for their association. Herein, we provide an overview of the recent progress of these coordination-chemistry-based protein-labeling methods and their applications for fluorescence imaging and functional analysis of cellular proteins, while highlighting our originally developed labeling methods. These successful examples clearly exemplify the utility and versatility of metal coordination chemistry in protein functional analysis.


Subject(s)
Coordination Complexes/chemistry , Fluorescent Dyes/chemistry , Molecular Probes/chemistry , Peptides/chemistry , Proteins/chemistry , Staining and Labeling
16.
Chem Commun (Camb) ; 49(44): 5022-4, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23612601

ABSTRACT

A new method for in-cell protein labeling was developed. This method employed a binding-induced nucleophilic reaction between the Cys-appended His-tag and the Ni(II)-NTA containing an α-chloroacetamide. Using this method, not only labeling of His-tag fused proteins but also the detection of a protein-protein interaction was achieved inside living cells.


Subject(s)
Green Fluorescent Proteins/metabolism , Histidine/metabolism , Oligopeptides/metabolism , Acetamides/chemistry , Cell Line, Tumor , Cysteine/chemistry , Cysteine/metabolism , Escherichia coli/metabolism , Fluorescent Dyes/chemistry , Green Fluorescent Proteins/genetics , HeLa Cells , Histidine/genetics , Humans , Kinetics , Nickel/chemistry , Oligopeptides/genetics , Protein Interaction Maps , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Tacrolimus Binding Protein 1A/genetics , Tacrolimus Binding Protein 1A/metabolism
17.
Chem Commun (Camb) ; 48(4): 594-6, 2012 Jan 14.
Article in English | MEDLINE | ID: mdl-22113378

ABSTRACT

A Zn(II) complex (Zn(II)-Ida) was designed as the new fluorescent probe for His-tag fused proteins. Thanks to the tight binding ability to histidine-rich sequences and bright fluorescence property of the Cy5-appended Zn(II)-Ida probes, selective and clear fluorescent imaging of the His-tag fused G-protein coupled receptors on live cell surfaces was carried out.


Subject(s)
Carbocyanines/chemistry , Coordination Complexes/chemistry , Fluorescent Dyes/chemistry , Histidine/analysis , Oligopeptides/analysis , Receptors, G-Protein-Coupled/analysis , Zinc/chemistry , HEK293 Cells , Humans , Microscopy, Fluorescence
18.
J Am Chem Soc ; 132(27): 9301-9, 2010 Jul 14.
Article in English | MEDLINE | ID: mdl-20568758

ABSTRACT

Selective protein labeling with a small molecular probe is a versatile method for elucidating protein functions in living cells. In this paper, we report a covalent labeling method of tag-fused G-protein coupled receptor (GPCR) proteins expressing on cell surfaces utilizing small functional molecules. This method employs the selective and rapid reaction of a peptide tag and a molecular probe, which comprises the cysteine-containing short CA6D4x2 tag (CAAAAAADDDDGDDDD) and a tetranuclear Zn(II)-DpaTyr probe containing a reactive alpha-chloroacetyl moiety. The covalent labeling of tag-fused GPCRs such as bradykinin receptor (B2R) and acetylcholine receptor (m1AchR) selectively proceeded under physiological conditions during short incubation (10-30 min) with Zn(II)-DpaTyr probes bearing various functional groups. Labeling with fluorophore-appended Zn(II)-DpaTyr probes enabled visualization of the GPCRs on the surface of HEK293 cells by fluorescence. Labeling with the biotin-appended probe allowed introduction of a biotin unit into the GPCRs. This biotin label was utilized for fluorescence bioimaging studies and postlabeling blotting analysis of the labeled GPCRs by use of the specific biotin-streptavidin interaction. The utility of this labeling method was demonstrated in several function analyses of GPCRs, such as fluorescence visualization of the stimuli-responsive internalization of GPCRs and pH change in endosomes containing the internalized GPCRs.


Subject(s)
Molecular Probe Techniques , Molecular Probes/chemistry , Receptors, G-Protein-Coupled/chemistry , Biotin , Cell Line , Cysteine , Endocytosis , Endosomes/metabolism , Fluoresceins , Humans , Oligopeptides , Organometallic Compounds , Receptors, G-Protein-Coupled/metabolism , Staining and Labeling
19.
Chem Asian J ; 5(4): 877-86, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20143369

ABSTRACT

A complementary recognition pair of a short-peptide tag and a small molecular probe is a versatile molecular tool for protein detection, handling, and purification, and so forth. In this manuscript, we report that the binuclear Ni(II)-DpaTyr (DpaTyr=bis((dipicolylamino)methyl)tyrosine) complex serves as a strong binding probe for an oligo-aspartate tag tethered to a protein. Among various binuclear metal complexes of M-DpaTyr (M=Zn(II), Ni(II), Mn(II), Cu(II), Cd(II), Co(III), and Fe(III)), we have found that Ni(II)-DpaTyr (1-2Ni(II)) displays a strong-binding affinity (apparent binding constant: K(app) approximately 10(5) M(-1)) for an oligo-aspartate peptide under neutral aqueous conditions (50 mM HEPES, 100 mM NaCl, pH 7.2). Detailed isothermal-titration calorimetry (ITC) studies reveal that the tri-aspartate D3-tag (DDD) is an optimal sequence recognized by 1-2Ni(II) in a 1:1 binding stoichiometry. On the other hand, other metal complexes of DpaTyr, except for Ni(II)- and Zn(II)-DpaTyr, show a negligible binding affinity for the oligo-aspartate peptide. The binding affinity was greatly enhanced in the pair between the dimer of Ni(II)-DpaTyr and the repeated D3 tag peptide (D3x2), such as DDDXXDDD, on the basis of the multivalent coordination interaction between them. Most notably, a remarkably high-binding affinity (K(app)=2x10(9) M(-1)) was achieved between the Ni(II)-DpaTyr dimer 4-4Ni(II) and the D3x2 tag peptide (DDDNGDDD). This affinity is approximately 100-fold stronger than that observed in the binding pair of the Zn(II)-DpaTyr (4-4Zn(II)) and the D4x2 tag (DDDDGDDDD), a useful tag-probe pair previously reported by us. The recognition pair of the Ni(II)-DpaTyr probe and the D3x2 tag can also work effectively on a protein surface, that is, 4-4Ni(II) is strongly bound to the FKBP12 protein tethered with the D3x2 tag (DDDNGDDD) with a large K(app) value of 5x10(8) M(-1). Taking advantage of the strong-binding affinity, this pair was successfully applied to the selective inactivation of the tag-fused beta-galactosidase by using the chromophore-assisted light inactivation (CALI) technique under crude conditions, such as cell lysate.


Subject(s)
Aspartic Acid/chemistry , Coordination Complexes/chemistry , Nickel/chemistry , Oligopeptides/chemistry , Proteins/chemistry , Amino Acid Sequence , Calorimetry , Coordination Complexes/chemical synthesis , Dimerization , Fluorescent Dyes/chemistry , Protein Binding , Tacrolimus Binding Protein 1A/chemistry , beta-Galactosidase/chemistry
20.
Bioorg Med Chem Lett ; 19(23): 6696-9, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19837586

ABSTRACT

A FLAG tag selective protein labeling method is newly developed in this study. Coupling of the selective binding between synthetic Ni-complex probe and FLAG tag with the acyl transfer reaction enables the site-selective covalent modification of FLAG peptide and FLAG-tag fused protein.


Subject(s)
Peptides/chemistry , Proteins/chemistry , Binding Sites , Models, Molecular , Molecular Structure , Oligopeptides , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...