Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 238(2): 584-597, 2023 04.
Article in English | MEDLINE | ID: mdl-36631959

ABSTRACT

Trees are known to be atmospheric methane (CH4 ) emitters. Little is known about seasonal dynamics of tree CH4 fluxes and relationships to environmental conditions. That prevents the correct estimation of net annual tree and forest CH4 exchange. We aimed to explore the contribution of stem emissions to forest CH4 exchange. We determined seasonal CH4 fluxes of mature European beech (Fagus sylvatica) stems and adjacent soil in a typical temperate beech forest of the White Carpathians with high spatial heterogeneity in soil moisture. The beech stems were net annual CH4 sources, whereas the soil was a net CH4 sink. High CH4 emitters showed clear seasonality in their stem CH4 emissions that followed stem CO2 efflux. Elevated CH4 fluxes were detected during the vegetation season. Observed high spatial variability in stem CH4 emissions was neither explicably by soil CH4 exchange nor by CH4 concentrations, water content, or temperature studied in soil profiles near each measured tree. The stem CH4 emissions offset the soil CH4 uptake by up to 46.5% and on average by 13% on stand level. In Central Europe, widely grown beech contributes markedly to seasonal dynamics of ecosystem CH4 exchange. Its contribution should be included into forest greenhouse gas flux inventories.


Subject(s)
Fagus , Soil , Ecosystem , Methane , Forests , Trees , Carbon Dioxide
2.
Plant Physiol Biochem ; 134: 103-112, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30097290

ABSTRACT

Under the conditions of ongoing climate change, terrestrial ecosystems will be simultaneously exposed to a permanent rise in atmospheric CO2 concentration and increasing variability of such environmental factors as temperature, precipitation, and UV radiation. This will result in numerous interactions. The interactive effects caused by exposure to such multiple environmental factors are not yet well understood. We tested the hypotheses that enhanced UV radiation reduces the stimulatory effect of elevated CO2 concentration on plant biomass production and that it alters biomass allocation in broadleaved European beech (Fagus sylvatica L.) saplings. Our results after 2 years of exposure confirmed interactive effects of CO2 concentration and UV radiation on biomass production, and particularly on biomass allocation to roots and aboveground biomass. The strongest stimulatory effect of elevated CO2 on aboveground biomass and roots was found under ambient UV radiation, while both low and high UV doses reduced this stimulation. Nitrogen content in the roots and the distribution of nitrogen among leaves and roots were also significantly affected by interaction of CO2 concentration and UV radiation. The observed changes in leaf and root C:N stoichiometry were associated with altered morphological traits, and particularly with a change in the proportion of fine roots. As the biomass allocation and especially the proportion of fine roots can play an important role in effective water and nutrient use and acclimation to future climates, it is essential to obtain a deeper understanding of the links between C:N stoichiometry and biomass accumulation.


Subject(s)
Biomass , Carbon Dioxide/pharmacology , Carbon/analysis , Fagus/metabolism , Nitrogen/analysis , Ultraviolet Rays , Fagus/drug effects , Fagus/radiation effects , Photosynthesis/drug effects , Photosynthesis/radiation effects , Plant Leaves/anatomy & histology , Plant Leaves/drug effects , Plant Leaves/radiation effects , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...