Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 114(12): 2775-2786, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29925015

ABSTRACT

The adenosylcobalamin- (coenzyme B12) dependent ethanolamine ammonia-lyase (EAL) plays a key role in aminoethanol metabolism, associated with microbiome homeostasis and Salmonella- and Escherichia coli-induced disease conditions in the human gut. To gain molecular insight into these processes toward development of potential therapeutic targets, reactions of the cryotrapped (S)-2-aminopropanol substrate radical EAL from Salmonella typhimurium are addressed over a temperature (T) range of 220-250 K by using T-step reaction initiation and time-resolved, full-spectrum electron paramagnetic resonance spectroscopy. The observed substrate radical reaction kinetics are characterized by two pairs of biexponential processes: native decay to diamagnetic products and growth of a non-native radical species and Co(II) in cobalamin. The multicomponent low-T kinetics are simulated by using a minimal model, in which the substrate-radical macrostate, S⋅, is partitioned by a free-energy barrier into two sequential microstates: 1) S1⋅, a relatively high-entropy/high-enthalpy microstate with a protein configuration that captures the nascent substrate radical in the terminal step of radical-pair separation; and 2) S2⋅, a relatively low-enthalpy/low-entropy microstate with a protein configuration that enables the rearrangement reaction. The non-native, destructive reaction of S1⋅ at T ≤ 250 K is caused by a prolonged lifetime in the substrate-radical capture state. Monotonic S⋅ decay over 278-300 K indicates that the free-energy barrier to S1⋅ and S2⋅ interconversion is latent at physiological T-values. Overall, the low-temperature studies reveal two protein-configuration microstates and connecting protein-configurational transitions that specialize the S⋅ macrostate for the dual functional roles of radical capture and rearrangement enabling. The identification of new, to our knowledge, intermediate states and specific protein-fluctuation contributions to the reaction coordinate represent an advance toward development of novel therapeutic targets in EAL.


Subject(s)
Biocatalysis , Ethanolamine Ammonia-Lyase/metabolism , Entropy , Ethanolamine Ammonia-Lyase/chemistry , Kinetics , Models, Molecular , Protein Conformation , Salmonella typhimurium/enzymology , Temperature , Vitamin B 12/metabolism
2.
J Mol Graph Model ; 44: 286-96, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23933704

ABSTRACT

Human topoisomerase-I is a vital enzyme involved in cellular regulation of DNA supercoiling. We extend our previous work on wild type enzyme [13] to study how different enzyme mutants with various parts of the protein clamped by disulfide mutations affect DNA rotation. Three different mutants have been simulated; they are clamped enzyme-DNA systems in which the disulfide bridge is formed by replacing His367 and Ala499, Gly365 and Ser534, and, respectively, Leu429 and Lys436 with Cys pairs. The first of these mutants, a 'distally clamped' enzyme, mimics the experimental study of Carey et al. [11], which reports DNA rotation within the clamped enzyme. The second one, a 'proximal clamp', mimics the study of Woo et al. [12], who do not observe DNA rotation. The third is a newly suggested mutant that clamps the hinge for protein opening; we use it to test a hypothesis on negative supercoil relaxation. Our simulations show that the helical domain α5 totally melts in relaxation of positive supercoils when the enzyme is proximally clamped, while it preserves its structure very well within the distally clamped one. Moreover, a distally clamped protein permits DNA rotations in both directions, while the proximal clamp allows rotations only for negatively supercoiled DNA. These observations reconcile the two seemingly contradictory experimental findings, suggesting that subtle changes in the location of the disulfide bridge alter the mechanism significantly.


Subject(s)
DNA Topoisomerases, Type I/chemistry , DNA/chemistry , Models, Molecular , DNA/metabolism , DNA Topoisomerases, Type I/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...