Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Toxicol Environ Health A ; 87(18): 730-751, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38904345

ABSTRACT

Achyrocline satureioides, popularly called "marcela" in Brazil, is used in traditional medicine in South America. A. satureioides, inflorescences are used for many conditions, including to minimize the Sars-Cov-2 symptoms. Therefore, the aim of this study was to determine the toxicity profile of A. satureioides aqueous extract (ASAE), using the Caenorhabditis elegans (C. elegans) alternative model. Survival, reproduction, development, and transgenerational assays were performed. The effects of ASAE were investigated under conditions of thermal stress and presence of oxidant hydrogen peroxide (H2O2). In addition, C. elegans strains containing high antioxidant enzyme levels and elevated lineages of daf-16, skn-1 and daf-2 regulatory pathways were examined. The ASAE LC50 value was found to be 77.3 ± 4 mg/ml. The concentration of ASAE 10 mg/ml (frequently used in humans) did not exhibit a significant reduction in worm survival at either the L1 or L4 stage, after 24 or 72 hr treatment. ASAE did not markedly alter the body area. In N2 strain, ASAE (10 or 25 mg/ml) reversed the damage initiated by H2O2. In addition, ASAE protected the damage produced by H2O2 in strains containing significant levels of sod-3, gst-4 and ctl - 1,2,3, suggesting modulation in these antioxidant systems by this plant extract. ASAE exposure activated daf-16 and skn-1 stress response transcriptional pathways independently of daf-2, even under extreme stress. Data suggest that ASAE, at the concentrations tested in C. elegans, exhibits a reliable toxicity profile, which may contribute to consideration for safe use in humans.


Subject(s)
Achyrocline , Caenorhabditis elegans , Plant Extracts , Animals , Caenorhabditis elegans/drug effects , Plant Extracts/toxicity , Plant Extracts/pharmacology , Achyrocline/chemistry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics
2.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 951-962, 2023 05.
Article in English | MEDLINE | ID: mdl-36536207

ABSTRACT

Asperuloside (ASP) and geniposide (GP) are iridoids that have shown various biological properties, such as reduction of inflammation, oxidative stress, and neuroprotection. The aim of this study was to investigate the mechanism of action of ASP and GP through the experimental model of pilocarpine-induced seizures. Mice were treated daily with saline, valproic acid (VPA), GP (5, 25, or 50 mg/kg), or ASP (20 or 40 mg/kg) for 8 days. Pilocarpine (PILO) treatment was administered after the last day of treatment, and the epileptic behavior was recorded for 1 h and analyzed by an adapted scale. Afterward, the hippocampus and blood samples were collected for western blot analyses, ELISA and comet assay, and bone marrow to the micronucleus test. We evaluated the expression of the inflammatory marker cyclooxygenase-2 (COX-2), GluN2B, a subunit of the NMDA receptor, pGluR1, an AMPA receptor, and the enzyme GAD-1 by western blot and the cytokine TNF-α by ELISA. The treatments with GP and ASP were capable to decrease the latency to the first seizure, although they did not change the latency to status epilepticus (SE). ASP demonstrated a genotoxic potential analyzed by comet assay; however, the micronuclei frequency was not increased in the bone marrow. The GP and ASP treatments were capable to reduce COX-2 and GluN2B receptor expression after PILO exposure. This study suggests that GP and ASP have a protective effect on PILO-induced seizures, decreasing GluN2B receptor and COX-2 expression.


Subject(s)
Pilocarpine , Receptors, N-Methyl-D-Aspartate , Rats , Mice , Animals , Pilocarpine/toxicity , Cyclooxygenase 2/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Rats, Wistar , Seizures/chemically induced , Seizures/drug therapy , Seizures/metabolism , Iridoids/pharmacology , Iridoids/therapeutic use , Hippocampus , Disease Models, Animal
3.
Neurochem Res ; 46(8): 2066-2078, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34019198

ABSTRACT

Gamma-decanolactone (GD) has been shown to reduce epileptic behavior in different models, inflammatory decreasing, oxidative stress, and genotoxic parameters. This study assessed the GD effect on the pentylenetetrazole (PTZ) model after acute and subchronic treatment. We evaluated the expression of the inflammatory marker cyclooxygenase-2 (COX-2), GluN2B, a subunit of the NMDA glutamate receptor, adenosine A1 receptor, and GD genotoxicity and mutagenicity. Male and female mice were treated with GD (300 mg/kg) for 12 days. On the tenth day, they were tested in the Hot Plate test. On the thirteenth day, all animals received PTZ (90 mg/kg), and epileptic behavior PTZ-induced was observed for 30 min. Pregabalin (PGB) (30 mg/kg) was used as a positive control. Samples of the hippocampus and blood were collected for Western Blotting analyses and Comet Assay and bone marrow to the Micronucleus test. Only the acute treatment of GD reduced the seizure occurrence and increased the latency to the first stage 3 seizures. Males treated with GD for 12 days demonstrated a significant increase in the expression of the GluN2B receptor and a decrease in the COX-2 expression. Acute and subchronic treatment with GD and PGB reduced the DNA damage produced by PTZ in males and females. There is no increase in the micronucleus frequency in bone marrow after subchronic treatment. This study suggests that GD, after 12 days, could not reduce PTZ-induced seizures, but it has been shown to protect against DNA damage, reduce COX-2 and increase GluN2B expression.


Subject(s)
Cyclooxygenase 2/metabolism , Lactones/therapeutic use , Neuroprotective Agents/therapeutic use , Receptor, Adenosine A1/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures/drug therapy , Animals , Body Weight/drug effects , DNA Damage/drug effects , Female , Lactones/toxicity , Male , Mice , Neuroprotective Agents/toxicity , Pentylenetetrazole , Seizures/chemically induced , Seizures/metabolism
4.
Zebrafish ; 18(2): 97-109, 2021 04.
Article in English | MEDLINE | ID: mdl-33650885

ABSTRACT

Although gamete cryopreservation has facilitated advancement of reproduction research by allowing the storage of cells over prolonged periods of time, during freezing-thawing cycles, cells inevitably suffer from cryoinjuries. Here, we evaluate oxidative stress and DNA damage of zebrafish sperm at different stages of the cryopreservation process. It was generally observed that the freezing and thawing of the samples led to an increase in the generation of reactive oxygen species and the activity of the catalase enzyme and a reduction in the generation of sulfhydryl groups and superoxide dismutase activity. The alkaline comet assay demonstrated that DNA damage increased after equilibration time, with an even greater increase after freezing and thawing. The comet assay modified with the enzyme formamidopyrimidine glycosylase, and Endonuclease III demonstrated greater DNA damage than the standard comet assay, demonstrating a high degree of oxidation of purines and pyrimidines at all stages of cryopreservation. Our results show that the freeze and thaw processes cause greater oxidative stress and DNA damage than cryoprotectant toxicity during exposure at the equilibrium stage.


Subject(s)
Cryopreservation , Zebrafish , Animals , Cryopreservation/methods , Cryoprotective Agents/toxicity , DNA Damage , Male , Oxidative Stress , Spermatozoa
5.
Cryobiology ; 97: 76-84, 2020 12.
Article in English | MEDLINE | ID: mdl-33038414

ABSTRACT

Cryoprotectants play a vital role in the cryopreservation process, protecting biological samples from freezing damage. Here, we evaluate the effects of the combination and interaction of different extenders with permeable and non-permeable cryoprotectants, on the cryopreservation of Danio rerio sperm, analyzing the effects of cryopreservation through a broad approach to variables. Two extenders were used, Hank's balanced salt solution (HBSS) and Ginsburg's solution. Eight cryoprotective solutions (CS) were used: CS1 (HBSS + Me2SO 8%), CS2 (HBSS + Methanol 8%), CS3 (HBSS + Me2SO 8% + Skim milk powder 15%), CS4 (HBSS + Methanol 8% + Skim milk powder 15%), CS5 (Ginsburg + Me2SO 8%), CS6 (Ginsburg + Methanol 8%), CS7 (Ginsburg + Me2SO 8% + Skim milk powder 15%) and CS8 (Ginsburg + Methanol 8% + Skim milk powder 15%). The samples were cryopreserved in cryovials for 20 min on dry ice, stored in liquid nitrogen, thawed at 38 °C for 10 s, and analyzed. In addition to increasing viability, we show that powdered milk also allows for better preservation of the membrane and normal cell morphology, and protects the sperm cells from DNA damage and oxidative stress caused by cryopreservation.


Subject(s)
Cryopreservation , Semen Preservation , Animals , Cryopreservation/methods , Cryoprotective Agents/pharmacology , DNA Damage , Dimethyl Sulfoxide , Male , Milk , Oxidative Stress , Powders , Sperm Motility , Spermatozoa , Zebrafish
6.
Sci Total Environ ; 685: 332-344, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31176220

ABSTRACT

The present study assessed the spatial and temporal variations on metal bioaccumulation and biochemical biomarker responses in oysters Crassostrea gasar transplanted to two different sites (S1 and S2) at the Laguna Estuarine System (LES), southern Brazil, over a 45-days period. A multi-biomarker approach was used, including the evaluation of lipid peroxidation (MDA) levels, and antioxidant defense enzymes (CAT, GPx, GR and G6PDH) and phase II biotransformation enzyme (GST) in the gills and digestive gland of oysters in combination with the quantification of Al, Cd, Cu, Pb, Fe, Ni and Zn in both tissues. The exposed oysters bioaccumulated metals, especially Al, Cd and Zn in gills and digestive gland, with most prominent biomarker responses in the gills. Results showed that GPx, GR and G6PDH enzymes offered an increased and coordinated response possibly against metal (Zn, Ni, Cd and Cu) contamination in gills. GST was inversely correlated to Cd levels, being its activity significantly lowered over the 45-d exposure periods at S2. On contrary, in digestive gland GST was slightly positively correlated to Cd, revealing a compensatory mechanism between tissues to protect oysters' cells against oxidative damages, since MDA levels also decreased. CAT also appeared to be involved in the cellular protection against oxidative stress, being increased in gills. However, CAT was negatively correlated to Al levels, which might suggest a possible inhibitory effect of this metal in the gills of C. gasar. Differences between tissues were evident by the Integrative Biomarker Responses version 2 (IBRv2) indexes, which showed different pattern between tissues when studying the sites and exposure periods separately. This study provided evidence for the effectiveness of using a multi-biomarker approach in oyster C. gasar to monitor estuarine metal pollution.


Subject(s)
Crassostrea/physiology , Environmental Monitoring , Metals/metabolism , Water Pollutants, Chemical/metabolism , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Brazil , Estuaries , Gills/metabolism , Inactivation, Metabolic , Lipid Peroxidation/drug effects , Metals/toxicity , Oxidation-Reduction , Oxidative Stress/physiology , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...