Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomater Sci Polym Ed ; 35(8): 1258-1272, 2024 06.
Article in English | MEDLINE | ID: mdl-38457333

ABSTRACT

Recently, we applied solution 2H-nuclear magnetic resonance spectroscopy (2H NMR) to analyze the water (deuterium oxide, D2O) structure in several biopolymers at ambient temperature. We established that polymers with good blood compatibility (i.e. poly(2-methoxyethyl acrylate) (PMEA)) have water observed at high magnetic fields (upfield) compared with bulk water. Polymers containing poly(propylene glycol) (PPG) or poly(propylene oxide) (PPO) exhibit good compatibility; however, the reason for this remains unclear. In addition, reports on the blood compatibility of PPO/PPG are limited. Therefore, PPG diester (PPGest) was prepared as a model polymer, and its blood compatibility and water structure were investigated. PPGest exhibited excellent blood compatibility. The water in PPGest was observed upfield by 2H NMR, and it was defined as non-freezing water via differential scanning calorimetry. Based on these observations, the relationship between the blood compatibility and water structure of PPGest is discussed by comparing with those of PMEA, and the reason for the good performance of PPG/PPO-based polymers is discussed.


Subject(s)
Calorimetry, Differential Scanning , Magnetic Resonance Spectroscopy , Propylene Glycols , Water , Propylene Glycols/chemistry , Water/chemistry , Humans , Biocompatible Materials/chemistry , Materials Testing , Polymers/chemistry , Animals
2.
Biol Open ; 11(6)2022 06 15.
Article in English | MEDLINE | ID: mdl-35579421

ABSTRACT

Promyelocytic leukemia (PML) nuclear bodies (PML-NBs), a class of membrane-less cellular organelles, participate in various biological activities. PML-NBs are known as the core-shell-type nuclear body, harboring 'client' proteins in their core. Although multiple membrane-less organelles work in the oocyte nucleus, PML-NBs have been predicted to be absent from oocytes. Here, we show that some well-known PML clients (but not endogenous PML) co-localized with small ubiquitin-related modifier (SUMO) protein in the nucleolus and peri-centromeric heterochromatin of maturing oocytes. In oocytes devoid of PML-NBs, endogenous PML protein localized in the vicinity of chromatin. During and after meiotic resumption, PML co-localized with SUMO gathering around chromosomes. To examine the benefit of the PML-NB-free intranuclear milieu in oocytes, we deliberately assembled PML-NBs by microinjecting human PML-encoding plasmids into oocytes. Under conditions of limited SUMO availability, assembled PML-NBs tended to cluster. Upon proteotoxic stress, SUMO delocalized from peri-centromeric heterochromatin and co-localized with SC35 (a marker of nuclear speckles)-positive large compartments, which was disturbed by pre-assembled PML-NBs. These observations suggest that the PML-NB-free intranuclear environment helps reserve SUMO for emergent responses by redirecting the flux of SUMO otherwise needed to maintain PML-NB dynamics.


Subject(s)
Heterochromatin , Leukemia , Animals , Heterochromatin/genetics , Humans , Mice , Nuclear Bodies , Oocytes/metabolism , Promyelocytic Leukemia Protein/genetics , Promyelocytic Leukemia Protein/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...