Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 194(Pt B): 115414, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37634316

ABSTRACT

We study physical mechanisms of the Tumen River water transport in the area of the Posyet Bay (Peter the Great Bay, Sea of Japan). This study is based on the satellite and in situ measurements, and numerical simulation of advection of river water by the current velocity simulated by Regional Ocean Model System (ROMS). The importance of this study is in identification of the reasons of the transport of pollutants into the area of the Far Eastern Marine Reserve. The results of the study showed that such reasons are wind currents and mesoscale cyclonic eddies. These eddies were originally detected on satellite imagery and CTD and bio-optical measurements. The anomalies in the form of spots of the chlorophyll a (CHL) increased concentration were detected on satellite images in fall 2009. The oceanographic sections of CTD and bio-optical measurements through the anomalies show that they are cyclonic eddies. These eddies consist of two cores - upper and lower. The upper core is filled with river waters with low salinity, high values of CHL and colored dissolved organic matter content (CDOM). The lower core is filled with cold saline waters. The ROMS results show that eddies are generated as a result of symmetrical and centrifugal instabilities.


Subject(s)
Bays , Rivers , Chlorophyll A , Fresh Water , Computer Simulation
2.
Methods Protoc ; 6(3)2023 May 01.
Article in English | MEDLINE | ID: mdl-37218906

ABSTRACT

The longitudinal monitoring of patient circulating tumor DNA (ctDNA) provides a powerful method for tracking the progression, remission, and recurrence of several types of cancer. Often, clinical and research approaches involve the manual review of individual liquid biopsy reports after sampling and genomic testing. Here, we describe a process developed to integrate techniques utilized in data science within a cancer research framework. Using data collection, an analysis that classifies genetic cancer mutations as pathogenic, and a patient matching methodology that identifies the same donor within all liquid biopsy reports, the manual work for research personnel is drastically reduced. Automated dashboards provide longitudinal views of patient data for research studies to investigate tumor progression and treatment efficacy via the identification of ctDNA variant allele frequencies over time.

SELECTION OF CITATIONS
SEARCH DETAIL
...