Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Harmful Algae ; 74: 46-57, 2018 04.
Article in English | MEDLINE | ID: mdl-29724342

ABSTRACT

Intense blooms of the heterotrophic dinoflagellate, green Noctiluca scintillans, have been reported annually in the Northern Arabian Sea since the early 2000s. Although not known to produce organic toxins, these blooms are still categorized as a harmful due to their association with massive fish mortalities. Recent work has attributed these blooms to the vertical expansion of the oxygen minimum zone, driven by cultural eutrophication from major coastal cities in western India. As diatoms are preferred prey of green Noctiluca scintillans, more frequent blooms of this mixotroph will likely impact the productivity of important fisheries in the region. The present study uses a satellite algorithm to determine the distribution of both diatom and green Noctiluca blooms in the Northeastern Arabian Sea from 2009 to 2016. The results from shipboard microscopy of phytoplankton community composition were used to validate the satellite estimates. The satellite algorithm showed 76% accuracy for detection of green Noctiluca and 92% for diatoms. Shipboard measurements and data from biogeochemical-Argo floats were used to assess the relationship between oxygen concentrations and green Noctiluca blooms in the Northeastern Arabian Sea. Regardless of the presence of a Noctiluca bloom, the dissolved oxygen in the photic zone was always >70% saturated, with an average oxygen saturation >90%. The variability in the relative abundance of diatoms and green Noctiluca is not correlated with changes in oxygen concentration. These findings provide no evidence that cultural eutrophication has contributed to the decadal scale shifts in plankton composition in the Northeastern Arabian Sea oceanic waters. Conversely, the climatic warming of surface waters would have intensified stratification, thereby reducing net nutrient flux to the photic zone and decreasing silicate to nitrate ratios (Si:N); both factors that could increase the competitive advantage of the mixotroph, green Noctiluca, over diatoms. If so, the decadal-scale trajectory of phytoplankton community composition in the Northeastern Arabian Sea may be a harbinger of future climate-driven change in other productive oceanic systems.


Subject(s)
Diatoms/physiology , Dinoflagellida/physiology , Environmental Monitoring , Harmful Algal Bloom/physiology , Seawater/chemistry , Anaerobiosis , Indian Ocean , Phytoplankton/physiology , Seasons
2.
MethodsX ; 4: 469-479, 2017.
Article in English | MEDLINE | ID: mdl-29188190

ABSTRACT

A new method of identifying anomalous oceanic temperature and salinity (T/S) data from Argo profiling floats is proposed. The proposed method uses World Ocean Database 2013 climatology to classify good against anomalous data by using convex hulls. An n-sided polygon (convex hull) with least area encompassing all the climatological points is constructed using Jarvis March algorithm. Subsequently Points In Polygon (PIP) principle implemented using ray casting algorithm is used to classify the T/S data as within or without acceptable bounds. It is observed that various types of anomalies associated with the oceanographic data viz., spikes, bias, sensor drifts etc can be identified using this method. Though demonstrated for Argo data it can be applied to any oceanographic data. •The patterns of variation of the parameter (temperature or salinity) corresponding to a particular depth, along the longitude or latitude can be used to build convex hulls.•This method can be effectively used for quality control by building Convex hulls for various observed depths corresponding to biogeochemical data which are sparsely observed.•This method has the advantage of treating the bulk of oceanographic in situ data in a single iteration which filters out anomalous data.

SELECTION OF CITATIONS
SEARCH DETAIL
...