Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Poult Sci ; 101(5): 101762, 2022 May.
Article in English | MEDLINE | ID: mdl-35278757

ABSTRACT

Methionine (Met) is the first limiting amino acid in corn and soybean meal-based diets (containing L-Met) in broiler chickens, which are often supplemented with synthetic DL-Met or DL-Hydroxy Met (OH-Met). Our objective was to quantitatively assess the efficacy of synthetic Met sources and determine differences in growth rate of broilers fed at or below requirements in response to Met intake. A systematic literature search resulted in building a database containing 480 treatment means from 39 articles published between 1985 and 2019 globally. The database was divided into starter, grower, and finisher subsets based on the age of the broilers. For each subset, linear-plateau and quadratic-plateau models were fitted to determine Met or sulfur amino acid (SAA; Met + Cysteine) requirements using average daily gain as a response variable. For each phase, 4 new subsets were obtained by only retaining records with digestible Met or SAA intake at or below requirement by linear-plateau or quadratic-plateau models. Then, a linear model (without plateau) was fitted for all new subsets for each rearing phase using supplemental digestible synthetic Met or SAA intake (basal Met intake was subtracted from total Met intake) as independent variables. The basal diet was made of only raw materials without supplementation of any synthetic Met source. Finally, the models were extended to evaluate source of synthetic Met effects on the slope parameter. At all stages of model fitting, the inclusion of a random study effect was evaluated for each parameter. All models were fitted within a Bayesian framework, for which minimally informative priors were used. The best models, that is, the most accurate inclusion of random effects, were selected based on at least 10-point difference in leave-one-out cross-validation information criterion. Model selection criteria did not consistently favor either of the linear- and quadratic-plateau models to determine Met or SAA requirements across broiler growth phases. Extending models with covariates (e.g., dietary energy and amino acids) did not improve any model fit. Body weight gain response of broiler chickens to the 2 sources was not different when fed at or below Met requirements for any of the growth phases.


Subject(s)
Animal Feed , Chickens , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Bayes Theorem , Chickens/physiology , Diet/veterinary , Dietary Supplements , Methionine , Racemethionine/metabolism
3.
J Dairy Sci ; 105(6): 5074-5083, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35346477

ABSTRACT

It is estimated that enteric methane (CH4) contributes about 70% of all livestock greenhouse gas (GHG) emissions. Several studies indicated that feed additives such as 3-nitrooxypropanol (3-NOP) and nitrate have great potential to reduce enteric emissions. The objective of this study was to determine the net effects of 3-NOP and nitrate on farmgate milk carbon footprint across various regions of the United States and to determine the variability of carbon footprint. A cradle-to-farmgate life cycle assessment was performed to determine regional and national carbon footprint to produce 1 kg of fat- and protein-corrected milk (FPCM). Records from 1,355 farms across 37 states included information on herd structure, milk production and composition, cattle diets, manure management, and farm energy. Enteric CH4, manure CH4, and nitrous oxide were calculated with either the widely used Intergovernmental Panel on Climate Change Tier 2 or region-specific equations available in the literature. Emissions were allocated between milk and meat using a biophysical allocation method. Impacts of nitrate and 3-NOP on baseline regional and national carbon footprint were accounted for using equations adjusted for dry matter intake and neutral detergent fiber. Uncertainty analysis of carbon footprint was performed using Monte Carlo simulations to capture variability due to inputs data. Overall, the milk carbon footprint for the baseline, nitrate, and 3-NOP scenarios were 1.14, 1.09 (4.8% reduction), and 1.01 (12% reduction) kg of CO2-equivalents (CO2-eq)/kg of FPCM across US regions. The greatest carbon footprint for the baseline scenario was in the Southeast (1.26 kg of CO2-eq/kg of FPCM) and lowest for the West region (1.02 kg of CO2-eq/kg of FPCM). Enteric CH4 reductions were 12.4 and 31.0% for the nitrate and 3-NOP scenarios, respectively. The uncertainty analysis showed that carbon footprint values ranged widely (0.88-1.52 and 0.56-1.84 kg of CO2-eq/kg of FPCM within 1 and 2 standard deviations, respectively), suggesting the importance of site-specific estimates of carbon footprint. Considering that 101 billion kilograms of milk was produced by the US dairy industry in 2020, the potential net reductions of GHG from the baseline 117 billion kilograms of CO2-eq were 5.6 and 13.9 billion kilograms of CO2-eq for the nitrate and 3-NOP scenarios, respectively.


Subject(s)
Greenhouse Gases , Milk , Animals , Carbon Dioxide/analysis , Carbon Footprint , Cattle , Dairying/methods , Life Cycle Stages , Manure , Methane/analysis , Milk/chemistry , Nitrates , Propanols , United States
4.
JDS Commun ; 2(1): 16-20, 2021 Jan.
Article in English | MEDLINE | ID: mdl-36337286

ABSTRACT

Reducing overall reactive N losses from dairy production systems depends substantially on reducing the atmospheric emission of manure ammonia (NH3). The objective of this study was to determine potential NH3-N emission of reconstituted manure using an in vitro protocol. Feces and urine were collected from a companion study designed as a Latin square in which 4 Holstein and 4 Jersey cows were fed diets containing 2 levels of forage neutral detergent fiber (NDF) [low-forage NDF (19%) vs. high-forage NDF (24%; dry matter basis)] from either alfalfa silage or corn silage (70:30 vs. 30:70 ratio of alfalfa silage NDF:corn silage NDF) arranged as a 2 × 2 factorial. All diets contained similar levels of crude protein (17%) and starch (23%), and had forage-to-concentrate ratios of 55:45 and 68:32 for low- and high-forage NDF diets, respectively. Measurements of NH3-N emission were conducted in a laboratory-scale chamber with 16 g of reconstituted manure (urine plus feces) incubated for 48 h at 15°C with sampling at 1, 3, 6, 12, 24, 36, and 48 h. Hourly NH3-N emissions data were analyzed using a repeated-measures mixed model in R (https://www.r-project.org/). The fixed effects were breed, forage NDF level, forage NDF source, time of sampling, and all possible interactions; cow was included as a random term. The cumulative 48-h NH3-N emissions and the scaled-up emissions accounting for daily output of manure from each cow were analyzed using the same model but without time of sampling. Level and source of forage in the diet tended to influence the pattern in hourly rate and 48-h cumulative emission, respectively. Accounting for daily manure volume differences, low-forage NDF diets led to lower estimates of daily NH3-N emissions than high-forage NDF diets (20% on a cow basis, 15% on a raw manure basis, and 18% on a manure-N basis). Compared with Holsteins, Jerseys emitted 17% lower estimated NH3-N on a cow basis, mainly due to lower manure excretion but tended to emit 15% more NH3-N expressed on a manure-N basis. Findings of this study suggested that cow breed and dietary forage NDF level should be considered in the prediction of NH3-N emission from the dairy industry.

5.
J Dairy Sci ; 103(7): 6087-6099, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32389470

ABSTRACT

Our objective was to determine the effects of replacing alfalfa silage (AS) neutral detergent fiber (NDF) with corn silage (CS) NDF at 2 levels of forage NDF (FNDF) on enteric methane (CH4), lactation performance, ruminal fluid characteristics, digestibility, and metabolism of N and energy in Holstein and Jersey cows. Twelve Holstein and 12 Jersey cows (all primiparous and mid-lactation) were used in a triplicated split-plot 4 × 4 Latin square experiment, where breed and diet formed the main and subplots, respectively. The 4 iso-nitrogenous and iso-starch dietary treatments were arranged as a 2 × 2 factorial with 2 levels of FNDF [19 (low FNDF, LF) and 24% (high FNDF, HF) of dry matter] and 2 sources of FNDF (70:30 and 30:70 ratio of AS NDF to CS NDF). Soyhull (non-forage NDF) and corn grain were respectively used to keep dietary NDF and starch content similar across diets. Total collection of feces and urine over 3 d was performed on 8 cows (1 Latin square from each breed). The difference in dry matter intake (DMI) between Holsteins and Jerseys was greater when fed AS than CS. Compared with Jerseys, Holstein cows had greater body weight (48%), DMI (34%), fat- and protein-corrected milk (FPCM; 31%) and CH4 production (22%; 471 vs. 385 g/d). However, breed did not affect CH4 intensity (g/kg of FPCM) or yield (g/kg of DMI), nutrient digestibility, and N partitioning. Compared with HF, LF-fed cows had greater DMI (10%), N intake (8%), and FPCM (5%), but they were 5% less efficient (both FPCM/DMI and milk N/intake N). Compared with HF, LF-fed cows excreted 11 and 17% less urinary N (g/d and % of N intake, respectively). In spite of lower (2.5%) acetate and higher (10%) propionate (mol/100 mol ruminal volatile fatty acids) LF-fed cows had greater (6%) CH4 production (g/d) than did HF-fed cows, most likely due to increased DMI, as affected mainly by the soyhulls. Compared with AS, CS-fed cows had greater DMI (7%) and FPCM (4%), but they were less efficient (5%), and CH4 yield (g/kg of DMI) was reduced by 8%. In addition, per unit of gross energy intake, CS-fed cows lost less urinary energy (15%) and CH energy (11%) than did AS-fed cows. We concluded that, in contrast to level and source of FNDF, breed did not affect digestive and metabolic efficiencies, and, furthermore, neither breed nor dietary treatments affected CH4 intensity. The tradeoff between CH4 and N losses may have implications in future studies assessing the environmental effects of milk production when approached from a whole-farm perspective.


Subject(s)
Dietary Fiber/administration & dosage , Digestion/drug effects , Lactation/drug effects , Methane/biosynthesis , Nitrogen/metabolism , Silage/analysis , Animals , Cattle , Cross-Over Studies , Diet/veterinary , Dietary Fiber/metabolism , Energy Metabolism , Fatty Acids, Volatile/metabolism , Feces/chemistry , Female , Medicago sativa/metabolism , Milk/chemistry , Milk Proteins/analysis , Rumen/metabolism , Starch/metabolism , Zea mays/metabolism
6.
J Anim Breed Genet ; 135(1): 28-36, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29152841

ABSTRACT

The objectives of the present study were (i) to find the best fitted model for repeatedly measured daily dry matter intake (DMI) data obtained from different herds and experiments across lactations and (ii) to get better estimates of the genetic parameters and better genetic evaluations. After editing, there were 572,512 daily DMI records of 3,495 animals (Holstein cows) from 11 different herds across 13 lactations and the animals were under 110 different nutritional experiments. The fitted model for this data set was a univariate repeated-measure animal model (called model 1) in which additive genetic and permanent environmental (within and across lactations) effects were fitted as random. Model 1 was fitted as two distinct models (called models 2 and 3) based on alternative fixed effect corrections. For unscaled data, each model (models 2 and 3) was fitted as a homoscedastic (HOM) model first and then as a heteroscedastic (HET) model. Then, data were scaled by multiplying with particular herd-scaling factors, which were calculated by accounting for heterogeneity of phenotypic within-herd variances. Models were selected based on cross-validation and prediction accuracy results. Scaling factors were re-estimated to determine the effectiveness of accounting for herd heterogeneity. Variance components and respective heritability and repeatability were estimated based on a pedigree-based relationship matrix. Results indicated that the model fitted for scaled data showed better fit than the models (HOM or HET) fitted for unscaled data. The heritability estimates of the models 2 and 3 fitted for scaled data were 0.30 and 0.08, respectively. The repeatability estimates of the model fitted for scaled data ranged from 0.51 to 0.63. The re-estimated scaling factor after accounting for heterogeneity of residual variances was close to 1.0, indicating the stabilization of residual variances and herd accounted for most of the heterogeneity. The rank correlation of EBVs between scaled and unscaled data ranged from 0.96 to 0.97.


Subject(s)
Animal Feed , Cattle/genetics , Dairying , Analysis of Variance , Animals , Female , Male , Models, Statistical , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...