Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9473, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658626

ABSTRACT

This study uses the rational Sine-Gordon expansion (RSGE) method to investigate the dynamical behavior of traveling wave solutions of the water wave phenomena for the time-fractional phi-four equation and the (2 + 1) dimensional Calogero-Bogoyavlanskil schilf (CBS) equation based on the conformable derivative. The technique uses the sine-Gordon equation as an auxiliary equation to generalize the well-known sine-Gordon expansion. It adopts a more broad strategy, a rational function rather than a polynomial one, of the solutions of the auxiliary equation, in contrast to the traditional sine-Gordon expansion technique. Several explanations for hyperbolic functions may be produced using the previously stated approach. The approach mentioned above is employed to provide diverse solutions of the time-fractional phi-four equation and the (2 + 1) dimensional CBS equations involving hyperbolic functions, such as soliton, single soliton, multiple-soliton, kink, cusp, lump-kink, kink double-soliton, and others. The RSGE approach enhances our comprehension of nonlinear processes, offers precise solutions to nonlinear equations, facilitates the investigation of solitons, propels the development of mathematical tools, and is applicable in many scientific and technical fields. The solutions are graphically shown in three-dimensional (3D) surface and contour plots using MATLAB software. All screens display the absolute wave configurations in the resolutions of the equation with the proper parameters. Furthermore, it can be deduced that the physical properties of the found solutions and their characteristics may help us comprehend how shallow water waves move in nonlinear dynamics.

2.
Sci Rep ; 14(1): 6455, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499560

ABSTRACT

To examine the dynamical behavior of travelling wave solutions of the water wave phenomenon for the family of 3D fractional Wazwaz-Benjamin-Bona-Mahony (WBBM) equations, this work employs the rational Sine-Gordon expansion (RSGE) approach based on the conformable fractional derivative. The method generalizes the well-known sine-Gordon expansion using the sine-Gordon equation as an auxiliary equation. In contrast to the conventional sine-Gordon expansion method, it takes a more general approach, a rational function rather than a polynomial one of the solutions of the auxiliary equation. The method described above is used to generate various solutions of the WBBM equations for hyperbolic functions, including soliton, singular soliton, multiple-soliton, kink, cusp, lump-kink, kink double-soliton, etc. The RSGE method contributes to our understanding of nonlinear phenomena, provides exact solutions to nonlinear equations, aids in studying solitons, advances mathematical techniques, and finds applications in various scientific and engineering disciplines. The answers are graphically shown in three-dimensional (3D) surface plots and contour plots using the MATLAB program. The resolutions of the equation, which have appropriate parameters, exhibit the absolute wave configurations in all screens. Furthermore, it can be inferred that the physical characteristics of the discovered solutions and their features may aid in our understanding of the propagation of shallow water waves in nonlinear dynamics.

3.
RSC Adv ; 13(47): 33336-33375, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37964903

ABSTRACT

Owing to the unique physical and chemical properties of 2D materials and the great success of graphene in various applications, the scientific community has been influenced to explore a new class of graphene-like 2D materials for next-generation technological applications. Consequently, many alternative layered and non-layered 2D materials, including h-BN, TMDs, and MXenes, have been synthesized recently for applications related to the 4th industrial revolution. In this review, recent progress in state-of-the-art research on 2D materials, including their synthesis routes, characterization and application-oriented properties, has been highlighted. The evolving applications of 2D materials in the areas of electronics, optoelectronics, spintronic devices, sensors, high-performance and transparent electrodes, energy conversion and storage, electromagnetic interference shielding, hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and nanocomposites are discussed. In particular, the state-of-the-art applications, challenges, and outlook of every class of 2D material are also presented as concluding remarks to guide this fast-progressing class of 2D materials beyond graphene for scientific research into next-generation materials.

4.
ACS Omega ; 8(36): 32917-32930, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37720781

ABSTRACT

In this work, density functional theory (DFT)-based calculations were performed to compute the physical properties (structural stability, mechanical behavior, and electronic, thermodynamic, and optical properties) of synthesized MAX phases Hf2SB, Hf2SC, Hf2SeB, Hf2SeC, and Hf2TeB and the as-yet-undiscovered MAX carbide phase Hf2TeC. Calculations of formation energy, phonon dispersion curves, and elastic constants confirmed the stability of the aforementioned compounds, including the predicted Hf2TeC. The obtained values of lattice parameters, elastic constants, and elastic moduli of Hf2SB, Hf2SC, Hf2SeB, Hf2SeC, and Hf2TeB showed fair agreement with earlier studies, whereas the values of the aforementioned parameters for the predicted Hf2TeC exhibit a good consequence of B replacement by C. The anisotropic mechanical properties are exhibited by the considered MAX phases. The metallic nature and its anisotropic behavior were revealed by the electronic band structure and density of states. The analysis of the thermal properties-Debye temperature, melting temperature, minimum thermal conductivity, and Grüneisen parameter-confirmed that the carbide phases were more suited than the boride phases considered herein. The MAX phase's response to incoming photons further demonstrated that they were metallic. Their suitability for use as coating materials to prevent solar heating was demonstrated by the reflectivity spectra. Additionally, this study demonstrated the impact of B replacing C in the MAX phases.

5.
ACS Omega ; 8(1): 954-968, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36643448

ABSTRACT

In this article, ab initio calculations of unexplored Ti2PB2, Zr2PbB2, and Nb2AB2 [A = P, S] were performed wherein Ti2PB2 along with its 211 boride phase Ti2PB was predicted for the first time. The stability was confirmed by calculating the formation energy, phonon dispersion curve, and elastic stiffness constants. The obtained elastic constants, elastic moduli, and Vickers hardness values of Ti2PB2, Zr2PbB2, and Nb2AB2 [A = P, S] were found to be significantly larger than those of their counterparts 211 borides and carbides. The studied compounds are brittle, like most MAX and MAB phases. The electronic band structure and density of states revealed the metallic nature of the titled borides. Several thermal parameters were explored, certifying the suitability of Ti2PB2, Zr2PbB2, and Nb2AB2 [A = P, S] to be used as efficient thermal barrier coating materials. The response of Ti2PB2, Zr2PbB2, and Nb2AB2 [A = P, S] to the incident photon was studied by computing the dielectric constant (real and imaginary parts), refractive index, absorption coefficient, photoconductivity, reflectivity, and energy loss function. In this work, we have explored the physical basis of the improved thermomechanical properties of 212 MAX phase borides compared to their existing carbide and boride counterparts.

6.
J Stored Prod Res ; 99: 102024, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36466545

ABSTRACT

Smallholder farmers in Bangladesh often use low-density polyethylene (LDPE) bags contained within woven polypropylene bags to store wheat seed during the summer monsoon that precedes winter season planting. High humidity and temperature during this period can encourage increased seed moisture and pests, thereby lowering seed quality. Following a farm household survey conducted to inform trial design, eighty farmers were engaged in an action research process in which they participated in designing and conducting trials comparing traditional and alternative seed storage methods over 30 weeks. Factorial treatments included comparison of hermetic SuperGrainbags® (Premium RZ) against LDPE bags, both with and without the addition of dried neem tree leaves (Azadirachta indica). SuperGrainbags® were more effective in maintaining seed moisture at acceptable levels close to pre-storage conditions than LDPE bags. Both seed germination and seedling coleoptile length were significantly greater in hermetic than LDPE bags. Neem had no effect on seed moisture, germination, or coleoptile length. SuperGrainbags® were also more effective in abating seed damage during storage, although inclusion of neem within LDPE bags also had significant damage. Quantification of seed predating insects and diseases suggested that SuperGrainbags® also suppressed Coleopteran pests and blackspot, the latter indicative of Fusarium graminearum. Conversely, where farmers used LDPE bags, neem also had an additional though limited pest suppressive effect. Post-storage treatment scoring by farmers revealed a strong preference for SuperGrainbags® and no preference differences for or against neem. This study demonstrates a process by which farmers can be involved in the participatory co-design and testing of alternative wheat storage options, and stresses the need to develop SuperGrainbag® supply chains so hermetic storage can be made widely available.

7.
ACS Omega ; 6(49): 33899-33913, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34926937

ABSTRACT

Boron-rich chalcogenides have been predicted to have excellent properties for optical and mechanical applications in recent times. In this regard, we report the electronic, optical, and mechanical properties of recently synthesized boron-rich chalcogenide compounds B12X (X = S and Se) using density functional theory for the first time. The effects of exchange and correlation functionals on these properties are also investigated. The consistency of the obtained crystal structure with the reported experimental results has been checked in terms of lattice parameters. The considered materials are mechanically stable, brittle, and elastically anisotropic. Furthermore, the elastic moduli and hardness parameters are calculated, which show that B12S can be treated as a prominent member of the hard materials family compared to B12Se. The origin of differences in hardness is explained on the basis of density of states near the Fermi level. Reasonably good values of fracture toughness and the machinability index for B12X (X = S and Se) are reported. The melting point, T m, for the B12S and B12Se compounds suggests that both solids are stable, at least up to 4208 and 3577 K, respectively. Indirect band gaps of B12S (2.27 eV) and B12Se (1.30 eV) are obtained using the HSE06 functional. The energy gaps using local density approximation (LDA) and generalized gradient approximation (GGA) are found to be significantly lower. The electrons of the B12Se compound show a lighter average effective mass than that of the B12S compound, which signifies a higher mobility of charge carriers in B12Se. The optical properties such as the dielectric function, refractive index, absorption coefficient, reflectivity, and loss function are characterized using GGA-PBE and HSE06 methods and discussed in detail. These compounds possess bulk optical anisotropy, and excellent absorption coefficients in the visible-light region along with very low static values of reflectivity spectra (range of 7.42-14.0% using both functionals) are noted. Such useful features of the compounds under investigation show promise for applications in optoelectronic and mechanical sectors.

8.
Sci Rep ; 10(1): 2502, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32051466

ABSTRACT

Present work reports an elegant method to address the emergence of two Dirac cones in a non-hexagonal graphene allotrope S-graphene (SG). We have availed nearest neighbour tight binding (NNTB) model to validate the existence of two Dirac cones reported from density functional theory (DFT) computations. Besides, the real space renormalization group (RSRG) scheme clearly reveals the key reason behind the emergence of two Dirac cones associated with the given topology. Furthermore, the robustness of these Dirac cones has been explored in terms of hopping parameters. As an important note, the Fermi velocity of the SG system (vF [Formula: see text] c/80) is almost 3.75 times that of the graphene. It has been observed that the Dirac cones can be easily shifted along the symmetry lines without breaking the degeneracy. We have attained two different conditions based on the sole relations of hopping parameters and on-site energies to break the degeneracy. Further, in order to perceive the topological aspect of the system we have obtained the phase diagram and Chern number of Haldane model. This exact analytical method along with the supported DFT computation will be very effective in studying the intrinsic behaviour of the Dirac materials other than graphene.

SELECTION OF CITATIONS
SEARCH DETAIL
...