Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Int J Pharm ; 654: 123984, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38461874

ABSTRACT

Both latent and multidrug-resistant tuberculosis (TB) have been causing significant concern worldwide. A novel drug, pretomanid (PA-824), has shown a potent bactericidal effect against both active and latent forms of Mycobacterium tuberculosis (MTb) and a synergistic effect when combined with pyrazinamide and moxifloxacin. This study aimed to develop triple combination spray dried inhalable formulations composed of antitubercular drugs, pretomanid, moxifloxacin, and pyrazinamide (1:2:8 w/w/w), alone (PaMP) and in combination with an aerosolization enhancer, L-leucine (20 % w/w, PaMPL). The formulation PaMPL consisted of hollow, spherical, dimpled particles (<5 µm) and showed good aerosolization behaviour with a fine particle fraction of 70 %. Solid-state characterization of formulations with and without L-leucine confirmed the amorphous nature of moxifloxacin and pretomanid and the crystalline nature of pyrazinamide with polymorphic transformation after the spray drying process. Further, the X-ray photoelectron spectroscopic analysis revealed the predominant surface composition of L-leucine on PaMPL dry powder particles. The dose-response cytotoxicity results showed pyrazinamide and moxifloxacin were non-toxic in both A549 and Calu-3 cell lines up to 150 µg/mL. However, the cell viability gradually decreased to 50 % when the pretomanid concentration increased to 150 µg/mL. The in vitro efficacy studies demonstrated that the triple combination formulation had more prominent antibacterial activity with a minimum inhibitory concentration (MIC) of 1 µg/mL against the MTb H37Rv strain as compared to individual drugs. In conclusion, the triple combination of pretomanid, moxifloxacin, and pyrazinamide as an inhalable dry powder formulation will potentially improve treatment efficacy with fewer systemic side effects in patients suffering from latent and multidrug-resistant TB.


Subject(s)
Nitroimidazoles , Pyrazinamide , Tuberculosis, Multidrug-Resistant , Humans , Pyrazinamide/pharmacology , Pyrazinamide/chemistry , Moxifloxacin/pharmacology , Moxifloxacin/chemistry , Powders/chemistry , Leucine/chemistry , Aerosols/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Tuberculosis, Multidrug-Resistant/drug therapy , Administration, Inhalation , Dry Powder Inhalers/methods , Particle Size
2.
Tuberculosis (Edinb) ; 145: 102478, 2024 03.
Article in English | MEDLINE | ID: mdl-38218133

ABSTRACT

To evaluate the diagnostic performance of Xpert MTB/RIF Ultra (Ultra) for the diagnosis of extrapulmonary tuberculosis (EPTB) from different types of extrapulmonary specimens in comparison with culture and composite microbiological reference standard (CRS). A total of 240 specimens were prospectively collected from presumptive EPTB patients between July 2021-January 2022 and tested by Ultra, Xpert, culture and acid-fast bacilli (AFB) smear microscopy. Out of 240 specimens, 35.8 %, 20.8 %, 11.3 %, and 7.1 % were detected as Mycobacterium tuberculosis complex by Ultra, Xpert, culture and AFB microscopy, respectively. An additional 15.0 % cases were detected by Ultra compared to Xpert MTB/RIF (Xpert) assay. A total of 28 (11.7 %) cases were identified as 'trace' category by Ultra with indeterminate rifampicin resistance result; of which 36.4 % were clinically confirmed as EPTB. Compared to culture, the sensitivity and specificity of Ultra and Xpert were 100 % and 72.3 %; 92.6 % and 88.3 %, respectively. In comparison with CRS, these were respectively: 98.9 % and 100 %; 57.5 % and 100 %. For individual category of specimens, sensitivity of Ultra was 100 % with varying specificity. We found that Ultra was highly sensitive for the rapid diagnosis of EPTB and has extensive potential over current diagnostics in high TB burden countries, but 'trace' results should be interpreted with caution.


Subject(s)
Antibiotics, Antitubercular , Mycobacterium tuberculosis , Tuberculosis, Extrapulmonary , Tuberculosis , Humans , Rifampin/pharmacology , Rifampin/therapeutic use , Mycobacterium tuberculosis/genetics , Prevalence , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Tuberculosis/drug therapy , Sensitivity and Specificity , Antibiotics, Antitubercular/pharmacology , Antibiotics, Antitubercular/therapeutic use , Drug Resistance, Bacterial/genetics
3.
Microbiol Spectr ; 12(1): e0327223, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38014980

ABSTRACT

IMPORTANCE: Affordable and accessible tests for COVID-19 allow for timely disease treatment and pandemic management. SalivaDirect is a faster and easier method to implement than NPS sampling. Patients can self-collect saliva samples at home or in other non-clinical settings without the help of a healthcare professional. Sample processing in SalivaDirect is less complex and more adaptable than in conventional nucleic acid extraction methods. We found that SalivaDirect has good diagnostic performance and is ideal for large-scale testing in settings where supplies may be limited or trained healthcare professionals are unavailable.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Health Personnel , Pandemics , RNA , Saliva , Specimen Handling
4.
Microorganisms ; 11(4)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37110489

ABSTRACT

Accurate and appropriate extrapulmonary tuberculosis (EPTB) diagnosis remains challenging due to its paucibacillary nature, requirement of invasive collection procedures, and lack of sensitive tests. This study investigated the diagnostic performance of different methods for the diagnosis of EPTB. A total of 1340 EPTB specimens were collected from presumptive EPTB patients from four different hospitals between November 2015 and March 2017. The collected specimens were tested with AFB microscopy, culture, Xpert MTB/RIF assay (Xpert), and MTBDRplus assay. Among the 1340 EPTB specimens, 49 (3.66%), 141 (10.52%), 166 (12.39%), and 154 (11.49%) were positive in AFB microscopy, culture, Xpert MTB/RIF, and MTBDRplus assay, respectively. A total of 194 (14.9%) cases were found positive in at least one of these methods. Using culture as a reference standard, the sensitivity and specificity of AFB microscopy, Xpert MTB/RIF, and MTBDRplus assay were: 27.0%/99.1%, 83.7%/96.0%, and 79.4%/96.5%, respectively. Compared to the composite reference standard, the sensitivity of culture, AFB microscopy, Xpert MTB/RIF, and MTBDRplus assay was 72.7%, 25.3%, 85.6%, and 79.4%, respectively, with a specificity of 100% for all the methods. The Xpert MTB/RIF assay showed the highest sensitivity compared to other methods. Considering the short turnaround time and promising findings, Xpert MTB/RIF assay should be integrated into national TB guidelines as a routine diagnostic test.

5.
Clin Infect Dis ; 76(3): 497-505, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35731948

ABSTRACT

BACKGROUND: Rifampin-resistant and/or multidrug-resistant tuberculosis (RR/MDR-TB) treatment requires multiple drugs, and outcomes remain suboptimal. Some drugs are associated with improved outcome. It is unknown whether particular pharmacokinetic-pharmacodynamic relationships predict outcome. METHODS: Adults with pulmonary RR/MDR-TB in Tanzania, Bangladesh, and the Russian Federation receiving local regimens were enrolled from June 2016 to July 2018. Serum was collected after 2, 4, and 8 weeks for each drug's area under the concentration-time curve over 24 hours (AUC0-24). Quantitative susceptibility of the M. tuberculosis isolate was measured by minimum inhibitory concentrations (MICs). Individual drug AUC0-24/MIC targets were assessed by adjusted odds ratios (ORs) for favorable treatment outcome, and hazard ratios (HRs) for time to sputum culture conversion. K-means clustering algorithm separated the cohort of the most common multidrug regimen into 4 clusters by AUC0-24/MIC exposures. RESULTS: Among 290 patients, 62 (21%) experienced treatment failure, including 30 deaths. Moxifloxacin AUC0-24/MIC target of 58 was associated with favorable treatment outcome (OR, 3.75; 95% confidence interval, 1.21-11.56; P = .022); levofloxacin AUC0-24/MIC of 118.3, clofazimine AUC0-24/MIC of 50.5, and pyrazinamide AUC0-24 of 379 mg × h/L were associated with faster culture conversion (HR >1.0, P < .05). Other individual drug exposures were not predictive. Clustering by AUC0-24/MIC revealed that those with the lowest multidrug exposures had the slowest culture conversion. CONCLUSIONS: Amidst multidrug regimens for RR/MDR-TB, serum pharmacokinetics and M. tuberculosis MICs were variable, yet defined parameters to certain drugs-fluoroquinolones, pyrazinamide, clofazimine-were predictive and should be optimized to improve clinical outcome. CLINICAL TRIALS REGISTRATION: NCT03559582.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Adult , Humans , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacokinetics , Rifampin/pharmacology , Rifampin/therapeutic use , Pyrazinamide/therapeutic use , Pyrazinamide/pharmacokinetics , Prospective Studies , Clofazimine/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/drug therapy , Microbial Sensitivity Tests
6.
Diagnostics (Basel) ; 12(7)2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35885580

ABSTRACT

Tuberculosis (TB) remains one of the leading causes of death worldwide and is caused by the single infectious agent Mycobacterium tuberculosis (Mtb). Although sputum is the most common specimen for pulmonary TB detection, some other respiratory specimens, such as bronchoalveolar lavage (BAL) fluid, gastric lavage (GL), and induced sputum (IS), are also collected from patients who are unable to deliver sputum. In this study, we aimed to evaluate the diagnostic performances of different test methods for TB diagnosis using BAL fluid specimens from sputum-scarce pulmonary TB patients. In this current study, a total of 210 BAL fluid specimens were collected and subjected to culture on Lowenstein-Jensen (L-J) medium, using an N-acetyl-L-cysteine-Sodium Hydroxide decontamination and digestion method, Xpert MTB/RIF (Xpert, Cepheid, Sunnyvale, CA, USA) assay, and acid-fast bacilli (AFB) microscopy with a Ziehl-Neelsen staining method for the detection of pulmonary TB. The sensitivity and specificity of these methods were then analyzed against the composite reference standard (CRS). Additionally, the receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of these assays. Among the 210 specimens, 39 (18.6%), 27 (12.8%), and 12 (5.7%) were found positive with Xpert assay, culture, and AFB microscopy, respectively. Considering the CRS, 42 (20%) were positive as the final diagnosis. The Xpert assay had a significantly higher sensitivity (92.9%, 95% CI: 80.5-98.5) compared to culture (64.3%, 95% CI: 48.0-78.4) and AFB microscopy (28.6%, 95% CI: 15.7-44.6) against the CRS. Additionally, the area under the ROC curve (AUC) for the Xpert assay, culture, and AFB microscopy accounted for 0.964, 0.821, and 0.655, respectively, when using CRS as the reference. In conclusion, our study findings demonstrated that the Xpert assay conferred a considerable diagnostic potential compared to other conventional methods for the diagnosis of pulmonary TB from BAL fluid specimens.

7.
Front Immunol ; 13: 853572, 2022.
Article in English | MEDLINE | ID: mdl-35392094

ABSTRACT

Tuberculosis (TB) is a difficult-to-treat infection because of multidrug regimen requirements based on drug susceptibility profiles and treatment observance issues. TB cure is defined by mycobacterial sterilization, technically complex to systematically assess. We hypothesized that microbiological outcome was associated with stage-specific immune changes in peripheral whole blood during TB treatment. The T-cell phenotypes of treated TB patients were prospectively characterized in a blinded fashion using mass cytometry after Mycobacterium tuberculosis (Mtb) antigen stimulation with QuantiFERON-TB Gold Plus, and then correlated to sputum culture status. At two months of treatment, cytotoxic and terminally differentiated CD8+ T-cells were under-represented and naïve CD4+ T-cells were over-represented in positive- versus negative-sputum culture patients, regardless of Mtb drug susceptibility. At treatment completion, a T-cell immune shift towards differentiated subpopulations was associated with TB cure. Overall, we identified specific T-cell profiles associated with slow sputum converters, which brings new insights in TB prognostic biomarker research designed for clinical application.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Antigens, Bacterial , CD8-Positive T-Lymphocytes , Humans , Immunophenotyping , T-Lymphocyte Subsets , Tuberculosis/diagnosis , Tuberculosis/drug therapy
8.
Diagnostics (Basel) ; 12(2)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35204501

ABSTRACT

The fast and accurate detection of susceptibility in drugs is a major challenge for a successful tuberculosis (TB) control programme. This study evaluated the performance of WHO-endorsed rapid diagnostic tools, such as BACTEC MGIT 960 SIRE (MGIT SIRE), GenoType MTBDRplus (MTBDRplus) and Xpert MTB/RIF (Xpert), for detecting susceptibility to first-line anti-TB drugs among pulmonary TB patients in Bangladesh. A total of 825 sputum samples with results from drug susceptibility testing (DST) against first-line anti-TB drugs in the MGIT SIRE, MTBDRplus and Xpert assays were evaluated and compared with the gold standard proportion susceptibility method of the Lowenstein-Jensen (LJ) medium. The overall sensitivities of MGIT SIRE were 97.6%, 90.0%, 61.3% and 44.9%, while specificities were 89.9%, 94.5%, 91.3% and 92.2% for detection of susceptibility to isoniazid (INH), rifampicin (RIF), streptomycin (STR) and ethambutol (EMB), respectively. For MTBDRplus, the sensitivities were 88.0% and 88.7%, and the specificities were 97.4% and 97.8% for the detection of susceptibility to INH and RIF, respectively. Xpert demonstrated a sensitivity and specificity of 94.8% and 99.5%, respectively, for the detection of RIF susceptibility. All tests performed significantly better in retreated TB patients compared with primary TB cases. For detection of RIF and INH susceptibility, all three assays showed almost perfect agreement with the LJ method, although MGIT SIRE exhibited low agreement for STR and EMB. Considering the high performance, shorter turnaround time and ease of use, molecular-based approaches Xpert and MTBDRplus can be widely implemented throughout the country for the rapid detection of drug-resistant TB.

9.
Microbiol Spectr ; 10(1): e0184821, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196788

ABSTRACT

Although the number of multidrug-resistant (MDR) tuberculosis (TB) cases is high overall, a major gap exists in our understanding of the molecular characteristics and transmission dynamics of the MDR Mycobacterium tuberculosis isolates circulating in Bangladesh. The present study aims to characterize the MDR-TB isolates of Bangladesh and to investigate the mode of transmission. A total of 544 MDR-TB isolates were obtained from a nationwide drug-resistant TB surveillance study conducted between October 2011 and March 2017 covering all geographic divisions of Bangladesh. The isolates were characterized using TbD1 deletion analysis, spoligotyping, and mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing. Deletion analysis showed that 440 (80.9%) isolates were the modern type, while the remainder were the ancestral type. The largest circulating lineage was the Beijing type, comprising 208 isolates (38.2%), followed by T, EAI, and LAM with 93 (17.1%), 58 (10.7%), and 52 (9.5%) isolates, respectively. Combined MIRU-VNTR and spoligotyping analysis demonstrated that the majority of the clustered isolates were of the Beijing and T1 lineages. The overall rate of recent transmission was estimated at 33.8%. In conclusion, the MDR M. tuberculosis isolates circulating in Bangladesh are mostly of the modern virulent type. The Beijing and T lineages are the predominant types and most of the transmission of MDR-TB can be attributed to them. The findings also suggest that, along with the remarkable transmission, the emergence of MDR-TB in Bangladesh is largely due to acquired resistance. Rapid and accurate diagnosis and successful treatment will be crucial for controlling MDR-TB in Bangladesh. IMPORTANCE Multidrug-resistant TB is considered to be the major threat to tuberculosis control activities worldwide, including in Bangladesh. Despite the fact that the number of MDR-TB cases is high, a major gap exists in our understanding of the molecular epidemiology of the MDR-TB isolates in Bangladesh. In our study, we characterized and classified the MDR-TB isolates circulating in Bangladesh and investigated their mode of transmission. Our results demonstrated that the MDR M. tuberculosis isolates circulating in Bangladesh are mostly of the modern virulent type. The Beijing and T lineages are the predominant types and are implicated in the majority of MDR-TB transmission. Our findings reveal that, along with the remarkable transmission, the emergence of MDR-TB in Bangladesh is largely due to acquired resistance, which may be due to nonadherence to treatment or inadequate treatment of TB patients. Rapid diagnosis and adherence to an appropriate treatment regimen are therefore crucial to controlling MDR-TB in Bangladesh.


Subject(s)
Genetic Variation , Molecular Epidemiology , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/genetics , Adult , Bangladesh/epidemiology , DNA, Bacterial/genetics , Female , Genotype , Humans , Male , Middle Aged , Minisatellite Repeats , Tuberculosis/epidemiology , Tuberculosis/microbiology , Tuberculosis/therapy , Tuberculosis/transmission , Young Adult
10.
Int J Infect Dis ; 114: 244-251, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34774779

ABSTRACT

BACKGROUND: The World Health Organization is considering substituting Xpert MTB/RIF (Xpert) with Xpert MTB/RIF Ultra (Ultra) for tuberculosis (TB) diagnosis, but supportive evidence is scarce, particularly among people more likely (presumptive) to have paucibacillary pulmonary TB (PTB). METHODS: During January-July 2018, presumptive PTB patients visiting TB Screening and Treatment Centres of Dhaka for routine chest X-ray (CXR) and conventional Xpert were enrolled. Sputum specimens were additionally tested with microscopy, culture, and Ultra. Specimens with "Trace call" by Ultra (Ultra-trace) were retested. Yield and diagnostic accuracy using various approaches to Ultra-trace and concordance of Ultra with bacteriological-positive PTB were assessed. RESULTS: Altogether, 1,083 participants (104 'Xpert-positive'; 979 'Xpert-negative and CXR-suggestive') were enrolled. All Xpert-positives and 900 (92%) Xpert-negatives were concordant with Ultra, however, seventy-nine (8.1%) Xpert-negative specimens tested positive with Ultra; 37 (46.8%) were categorically positives, and 42 (53.2%) were Ultra-trace. Sixteen of the 42 were retested, of whom eight (50.1%) Ultra-trace turned categorically positive, leading to 45 (4.6%) additionally detected by Ultra. Ultra sensitivity and specificity were 93.9% and 94.6%, and it additionally detected 5.4% more TB patients with a concordance of 94.6% (kappa, □=0.78) compared to any bacteriologically positive specimen (microscopy, culture, or Xpert). CONCLUSION: Ultra exhibited improved detection and accuracy among Xpert-negatives in a cohort with a high likelihood of PTB.


Subject(s)
Antibiotics, Antitubercular , Mycobacterium tuberculosis , Tuberculosis, Lymph Node , Antibiotics, Antitubercular/pharmacology , Bangladesh/epidemiology , Drug Resistance, Bacterial , Humans , Mycobacterium tuberculosis/genetics , Rifampin , Sensitivity and Specificity , Sputum , Tuberculosis, Lymph Node/drug therapy
11.
PLoS One ; 16(12): e0261329, 2021.
Article in English | MEDLINE | ID: mdl-34914803

ABSTRACT

BACKGROUND: Rapid and early detection of drug susceptibility among multidrug-resistant tuberculosis (MDR-TB) patients could guide the timely initiation of effective treatment and reduce transmission of drug-resistant TB. In the current study, we evaluated the diagnostic performance of GenoType MTBDRsl (MTBDRsl) ver1.0 assay for detection of resistance to ofloxacin (OFL), kanamycin (KAN) and ethambutol (EMB), and additionally the XDR-TB among MDR-TB patients in Bangladesh. METHODS: The MTBDRsl assay was performed directly on 218 smear-positive sputum specimens collected from MDR-TB patients and the results were compared with the phenotypic drug susceptibility testing (DST) performed on solid Lowenstein-Jensen (L-J) media. We also analyzed the mutation patterns of gyrA, rrs, and embB genes for detection of resistance to OFL, KAN and EMB, respectively. RESULTS: The sensitivity and specificity of the MTBDRsl compared to phenotypic L-J DST were 81.8% (95% CI, 69.1-90.9) and 98.8% (95% CI, 95.6-99.8), respectively for OFL (PPV: 95.7% & NPV: 94.1%); 65.1% (95% CI, 57.5-72.2) and 86.7% (95% CI, 73.2-94.9), respectively for EMB (PPV: 94.9% & NPV: 39.4%); and 100% for KAN. The diagnostic accuracy of KAN, OFL and EMB were 100, 94.5 and 69.6%, respectively. Moreover, the sensitivity, specificity and diagnostic accuracy of MtBDRsl for detection of XDR-TB was 100%. The most frequently observed mutations were at codon D94G (46.8%) of gyrA gene, A1401G (83.3%) of rrs gene, and M306V (41.5%) of the embB gene. CONCLUSION: Considering the excellent performance in this study we suggest that MTBDRsl assay can be used as an initial rapid test for detection of KAN and OFL susceptibility, as well as XDR-TB directly from smear-positive sputum specimens of MDR-TB patients in Bangladesh.


Subject(s)
Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/genetics , Adult , Aged , Aged, 80 and over , Antitubercular Agents/therapeutic use , Bangladesh/epidemiology , DNA, Bacterial/genetics , Ethambutol/therapeutic use , Extensively Drug-Resistant Tuberculosis/diagnosis , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/genetics , Female , Genotype , Genotyping Techniques/methods , Humans , Kanamycin/therapeutic use , Male , Microbial Sensitivity Tests , Middle Aged , Ofloxacin/therapeutic use , Sensitivity and Specificity , Sputum/chemistry , Tuberculosis, Multidrug-Resistant/drug therapy
12.
Microbiol Spectr ; 9(3): e0046821, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34730436

ABSTRACT

Coronavirus disease 19 (COVID-19)-caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-has spread rapidly around the world. The global shortage of equipment and health care professionals, diagnostic cost, and difficulty in collecting nasopharyngeal swabs (NPSs) necessitate the use of an alternative specimen type for SARS-CoV-2 diagnosis. In this study, we investigated the use of saliva as an alternative specimen type for SARS-CoV-2 detection. Participants presenting COVID-19 symptoms and their contacts were enrolled at the COVID-19 Screening Unit of Dhaka Hospital of the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), from July to November 2020. Paired NPS and saliva specimens were collected from each participant. Reverse transcription-quantitative PCR (RT-qPCR) was performed to detect SARS-CoV-2. Of the 596 suspected COVID-19-positive participants, 231 (38.7%) were detected as COVID-19 positive by RT-qPCR from at least 1 specimen type. Among the positive cases, 184 (79.6%) patients were identified to be positive for SARS-CoV-2 based on NPS and saliva samples, whereas 45 (19.65%) patients were positive for SARS-CoV-2 based on NPS samples but negative for SARS-CoV-2 based on the saliva samples. Two (0.5%) patients were positive for SARS-CoV-2 based on saliva samples but negative for SARS-CoV-2 based on NPS samples. The sensitivity and specificity of the saliva samples were 80.3% and 99.4%, respectively. SARS-CoV-2 detection was higher in saliva (85.1%) among the patients who visited the clinic after 1 to 5 days of symptom onset. A lower median cycle threshold (CT) value indicated a higher SARS-CoV-2 viral load in NPS than that in saliva for target genes among the positive specimens. The study findings suggest that saliva can be used accurately for diagnosis of SARS-CoV-2 early after symptom onset in clinical and community settings. IMPORTANCE As the COVID-19 pandemic erupted, the WHO recommended the use of nasopharyngeal or throat swabs for the detection of SARS-CoV-2 etiology of COVID-19. The collection of NPS causes discomfort because of its invasive collection procedure. There are considerable risks to health care workers during the collection of these specimens. Therefore, an alternative, noninvasive, reliable, and self-collected specimen was explored in this study. This study investigated the feasibility and suitability of saliva versus NPS for the detection of SARS-CoV-2. Here, we showed that the sensitivity of saliva specimens was 80.35%, which meets the WHO criteria. Saliva is an easy-to-get, convenient, and low-cost specimen that yields better results if it is collected within the first 5 days of symptom onset. Our study findings suggest that saliva can be used in low-resource countries, community settings, and vulnerable groups, such as children and elderly people.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Saliva/virology , Specimen Handling/methods , Adult , Bangladesh , Diagnostic Tests, Routine , Humans , Male , Mass Screening , Middle Aged , Pandemics , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
13.
Pathogens ; 10(11)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34832578

ABSTRACT

Fluoroquinolone (FQ) compounds-moxifloxacin (MOX), levofloxacin (LEV), and ofloxacin (OFL)-are used to treat multidrug-resistant tuberculosis (MDR-TB) globally. In this study, we investigated the correlation of gyr mutations among Mtb isolates with the MICs of MOX, LEV, and OFL in Bangladesh. A total of 50 MDR-TB isolates with gyr mutations, detected by the GenoType MTBDRsl assay, were subjected to drug susceptibility testing to determine the MICs of the FQs. Spoligotyping was performed to correlate the genetic diversity of the gyr mutant isolates with different MIC distributions. Among the 50 isolates, 44 (88%) had mutations in the gyrA gene, one (2%) had a mutation in the gyrB gene, and five (10%) isolates had unidentified mutations. The substitutions in the gyrA region were at A90V (n = 19, 38%), D94G (n = 16, 32%), D94A (n = 4, 8%), D94N/D94Y (n = 4, 8%), and S91P (n = 1, 2%), compared to the gyrB gene at N538D (n = 1.2%). D94G mutations showed the highest MICs for MOX, LEV, and OFL, ranging between 4.0 and 8.0 µg/mL, 4.0 and 16.0 µg/mL, and 16.0 and 32.0 µg/mL, respectively; while the most common substitution of A90V showed the lowest ranges of MICs (1.0-4.0 µg/mL, 2.0-8.0 µg/mL, and 4.0-32.0 µg/mL, respectively). Spoligotyping lineages demonstrated no significant differences regarding the prevalence of different gyr mutations. In conclusion, the substitutions of codon A90V and D94G in the gyr genes were mostly responsible for the FQs' resistance among Mtb isolates in Bangladesh. Low levels of resistance were associated with the substitutions of A90V, while the D94G substitutions were associated with a high level of resistance to all FQs.

14.
Infect Genet Evol ; 95: 105052, 2021 11.
Article in English | MEDLINE | ID: mdl-34454121

ABSTRACT

Tuberculosis (TB) remains one of the leading causes of death and Bangladesh ranks 7th among the highest TB burden countries. Though molecular epidemiological data for pulmonary TB (PTB) have previously been described in Bangladesh, data on the molecular characterization and clinical association with different lineages among extrapulmonary TB (EPTB) is lacking. The aim of the study was to investigate the molecular characterization and lineage distribution of M. tuberculosis isolates obtained from patients with EPTB in Bangladesh. Between November 2015 and March 2017, a total of 1,340 EPTB specimens including lymph node, pus, tissue, ascitic fluid, cerebrospinal fluid, pleural fluid, abscess wall, urine etc. were collected from four tertiary care hospitals in Dhaka city, Bangladesh. Among the specimens, 141 were found positive on solid culture. Molecular characterization of the 141 isolates was done by deletion analysis, spoligotyping and Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeats (MIRU-VNTR) analysis. Among the 141 isolates, 80 (56.7%) were found as 'modern' and the remaining 61 (43.3%) were 'ancestral' type. Spoligotyping results revealed 91 distinct patterns of which 74 isolates were unique and the remaining 67 were divided into 17 distinct clusters. East African- Indian (EAI) lineage was the most predominant, comprising 26 (18.4%) isolates, followed by the Beijing lineage (14.2%). 15-loci MIRU-VNTR analysis revealed that 132 isolates (93.5%) had unique patterns, whereas only 9 (6.5%) isolates were grouped into 4 distinct clusters. In conclusion, the study findings provide a first insight into genetic diversity of EPTB isolates in Bangladesh. The present study demonstrated that 'modern' strains were more prevalent among the EPTB cases, while EAI lineages were predominantly circulating in this region.


Subject(s)
Genetic Variation , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology , Adolescent , Adult , Aged , Aged, 80 and over , Bangladesh , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Young Adult
15.
Sci Rep ; 11(1): 13646, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34211042

ABSTRACT

There is a crucial need for non-sputum-based TB tests. Here, we evaluate the performance of RISK6, a human-blood transcriptomic signature, for TB screening, triage and treatment monitoring. RISK6 performance was also compared to that of two IGRAs: one based on RD1 antigens (QuantiFERON-TB Gold Plus, QFT-P, Qiagen) and one on recombinant M. tuberculosis HBHA expressed in Mycobacterium smegmatis (IGRA-rmsHBHA). In this multicenter prospective nested case-control study conducted in Bangladesh, Georgia, Lebanon and Madagascar, adult non-immunocompromised patients with bacteriologically confirmed active pulmonary TB (ATB), latent TB infection (LTBI) and healthy donors (HD) were enrolled. ATB patients were followed-up during and after treatment. Blood RISK6 scores were assessed using quantitative real-time PCR and evaluated by area under the receiver-operating characteristic curve (ROC AUC). RISK6 performance to discriminate ATB from HD reached an AUC of 0.94 (95% CI 0.89-0.99), with 90.9% sensitivity and 87.8% specificity, thus achieving the minimal WHO target product profile for a non-sputum-based TB screening test. Besides, RISK6 yielded an AUC of 0.93 (95% CI 0.85-1) with 90.9% sensitivity and 88.5% specificity for discriminating ATB from LTBI. Moreover, RISK6 showed higher performance (AUC 0.90, 95% CI 0.85-0.94) than IGRA-rmsHBHA (AUC 0.75, 95% CI 0.69-0.82) to differentiate TB infection stages. Finally, RISK6 signature scores significantly decreased after 2 months of TB treatment and continued to decrease gradually until the end of treatment reaching scores obtained in HD. We confirmed the performance of RISK6 signature as a triage TB test and its utility for treatment monitoring.


Subject(s)
Mycobacterium tuberculosis/genetics , Transcriptome , Tuberculosis/diagnosis , Adult , Case-Control Studies , Disease Management , Female , Humans , Latent Tuberculosis/blood , Latent Tuberculosis/diagnosis , Latent Tuberculosis/genetics , Latent Tuberculosis/therapy , Male , Mycobacterium tuberculosis/isolation & purification , Prospective Studies , Triage , Tuberculosis/blood , Tuberculosis/genetics , Tuberculosis/therapy , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/therapy , Young Adult
16.
Clin Infect Dis ; 73(2): 226-234, 2021 07 15.
Article in English | MEDLINE | ID: mdl-32421765

ABSTRACT

BACKGROUND: The World Health Organization recommends the Xpert MTB/RIF Ultra assay for diagnosing pulmonary tuberculosis (PTB) in children. Though stool is a potential alternative to respiratory specimens among children, the diagnostic performance of Xpert Ultra on stool is unknown. Thus, we assessed the diagnostic performance of Xpert Ultra on stool to diagnose PTB in children. METHODS: We conducted a cross-sectional study among consecutively recruited children (< 15 years of age) with presumptive PTB admitted in 4 tertiary care hospitals in Dhaka, Bangladesh, between January 2018 and April 2019. Single induced sputum and stool specimens were subjected to culture, Xpert, and Xpert Ultra. We considered children as bacteriologically confirmed on induced sputum if any test performed on induced sputum was positive for Mycobacterium tuberculosis and bacteriologically confirmed if M. tuberculosis was detected on either induced sputum or stool. RESULTS: Of 447 children, 29 (6.5%) were bacteriologically confirmed on induced sputum and 72 (16.1%) were bacteriologically confirmed. With "bacteriologically confirmed on induced sputum" as a reference, the sensitivity and specificity of Xpert Ultra on stool were 58.6% and 88.1%, respectively. Xpert on stool had sensitivity and specificity of 37.9% and 100.0%, respectively. Among bacteriologically confirmed children, Xpert Ultra on stool was positive in 60 (83.3%), of whom 48 (80.0%) had "trace call." CONCLUSIONS: In children, Xpert Ultra on stool has better sensitivity but lesser specificity than Xpert. A high proportion of Xpert Ultra assays positive on stool had trace call. Future longitudinal studies on clinical evolution are required to provide insight on the management of children with trace call.


Subject(s)
Antibiotics, Antitubercular , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Antibiotics, Antitubercular/therapeutic use , Bangladesh , Child , Cross-Sectional Studies , Humans , Rifampin , Sensitivity and Specificity , Sputum , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/drug therapy
17.
Int J Infect Dis ; 100: 199-206, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32920230

ABSTRACT

OBJECTIVES: Tuberculosis (TB) is the leading infectious cause of death in the world. Cheaper and more accessible TB treatment monitoring methods are needed. Here, we evaluated white blood cell (WBC) absolute counts, lymphocyte, and monocyte proportions during TB treatment, and characterized their association with treatment failure. METHODS: This multicentered prospective cohort study was based in Bangladesh, Georgia, Lebanon, Madagascar, and Paraguay. Adult, non-immunocompromised patients with culture-confirmed pulmonary TB were included and followed up after two months of treatment and at the end of therapy. Blood counts were compared to treatment outcome using descriptive statistics, logistic regression, and Receiver Operating Characteristic (ROC) analyses. RESULTS: Between December 2017 and August 2020, 198 participants were enrolled, and 152 completed treatment, including 28 (18.5%) drug-resistant patients. The rate of cure at the end of treatment was 90.8% (138/152). WBC absolute counts decreased, and lymphocyte proportions increased throughout treatment. In multivariate analyses, baseline high WBC counts and low lymphocyte proportions were associated with positive sputum culture results at the end of treatment (WBC > 11,450 cells/mm3: p = 0.048; lymphocytes <16.0%: p = 0.039; WBC > 11,450 cells/mm3 and lymphocytes <16.0%: p = 0.024). CONCLUSION: High WBC counts and low lymphocyte proportions at baseline are significantly associated with the risk of TB treatment failure.


Subject(s)
Leukocytosis/blood , Lymphocytes , Lymphopenia/blood , Monocytes , Tuberculosis, Pulmonary/drug therapy , Adult , Bangladesh , Cohort Studies , Female , Georgia , Humans , Lebanon , Leukocyte Count , Madagascar , Male , Middle Aged , Paraguay , Prospective Studies , Sputum/microbiology , Treatment Failure , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/microbiology , Young Adult
18.
Infect Drug Resist ; 13: 789-797, 2020.
Article in English | MEDLINE | ID: mdl-32210593

ABSTRACT

BACKGROUND: Rifampicin resistance (RR) is a key indicator of multidrug-resistant tuberculosis (MDR-TB) and 95% of the RR is associated with the mutation in the 81-bp rifampicin resistance determining region (RRDR) of the rpoB gene of Mycobacterium tuberculosis complex (MTBC). The Xpert MTB/RIF (Xpert) assay uses five overlapping molecular beacon probes (A-E) complementary to RRDR region that detect MTBC and mutations associated with RR. The objective of the study was to investigate the distribution and frequency of mutations detected by Xpert assay among Beijing and non-Beijing RR-TB isolates. METHODS: A total of 205 randomly selected RR-TB specimens detected by Xpert assay were included in this study. A portion of specimens was further subjected to culture, MTBDRplus test and the positive culture isolates were genotyped by spoligotyping. RESULTS: We found that the most frequent mutation occurred at probe E (S531L) binding region in both Beijing and non-Beijing isolates (61.9% and 66.9%, respectively). The Beijing family had higher mutation rates than non-Beijing (19.0% vs 12.4%) at probe B (D516V) while the non-Beijing family had higher mutations at probe D (H526D or H526Y) than the Beijing (13.2% vs 10.7%) family. Mutations at probes Aand C were less common in both Beijing and non-Beijing isolates. There was no significant difference (P=0.36) in the occurrence of mutations at different probes between Beijing and non-Beijing isolates. CONCLUSIONS: The study results revealed that the most frequent mutation occurs in the region of probe E and the least common mutations at probe A and C among both Beijing and non-Beijing RR-TB cases. This first insight into the probe mutation variation and frequencies among the RR-TB cases in Bangladesh forms the baseline information for further investigation.

19.
Front Immunol ; 11: 616450, 2020.
Article in English | MEDLINE | ID: mdl-33603746

ABSTRACT

Background: Tuberculosis (TB) is a leading infectious cause of death. To improve treatment efficacy, quicker monitoring methods are needed. The objective of this study was to monitor the response to a heparin-binding hemagglutinin (HBHA) interferon-γ (IFN-γ) release assay (IGRA) and QuantiFERON-TB Gold Plus (QFT-P) and to analyze plasma IFN-γ levels according to sputum culture conversion and immune cell counts during treatment. Methods: This multicentered cohort study was based in Bangladesh, Georgia, Lebanon, Madagascar, and Paraguay. Adult, non-immunocompromised patients with culture-confirmed pulmonary TB were included. Patients were followed up at baseline (T0), after two months of treatment (T1), and at the end of therapy (T2). Clinical data and blood samples were collected at each timepoint. Whole blood samples were stimulated with QFT-P antigens or recombinant methylated Mycobacterium tuberculosis HBHA (produced in Mycobacterium smegmatis; rmsHBHA). Plasma IFN-γ levels were then assessed by ELISA. Findings: Between December 2017 and September 2020, 132 participants completed treatment, including 28 (21.2%) drug-resistant patients. rmsHBHA IFN-γ increased significantly throughout treatment (0.086 IU/ml at T0 vs. 1.03 IU/ml at T2, p < 0.001) while QFT-P IFN-γ remained constant (TB1: 0.53 IU/ml at T0 vs. 0.63 IU/ml at T2, p = 0.13). Patients with low lymphocyte percentages (<14%) or high neutrophil percentages (>79%) at baseline had significantly lower IFN-γ responses to QFT-P and rmsHBHA at T0 and T1. In a small group of slow converters (patients with positive cultures at T1; n = 16), we observed a consistent clinical pattern at baseline (high neutrophil percentages, low lymphocyte percentages and BMI, low TB1, TB2, and MIT IFN-γ responses) and low rmsHBHA IFN-γ at T1 and T2. However, the accuracy of the QFT-P and rmsHBHA IGRAs compared to culture throughout treatment was low (40 and 65% respectively). Combining both tests improved their sensitivity and accuracy (70-80%) but not their specificity (<30%). Conclusion: We showed that QFT-P and rmsHBHA IFN-γ responses were associated with rates of sputum culture conversion. Our results support a growing body of evidence suggesting that rmsHBHA IFN-γ discriminates between the different stages of TB, from active disease to controlled infection. However, further work is needed to confirm the specificity of QFT-P and rmsHBHA IGRAs for treatment monitoring.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Interferon-gamma/blood , Treatment Outcome , Tuberculosis, Pulmonary/diagnosis , Adult , Antitubercular Agents/therapeutic use , Biomarkers/blood , Cohort Studies , Female , Humans , Latent Tuberculosis/diagnosis , Male , Tuberculosis, Pulmonary/drug therapy
20.
Infect Genet Evol ; 65: 136-143, 2018 11.
Article in English | MEDLINE | ID: mdl-30048809

ABSTRACT

Tuberculosis (TB) remains a major public health problem worldwide including in Bangladesh. Molecular epidemiological tools provide genotyping profiles of Mycobacterium tuberculosis (M. tuberculosis) strains that can give insight into the transmission of TB in a specific region. The objective of the study was to identify the genetic diversity and drug susceptibility profile of M. tuberculosis strains circulating in the northeast Bangladesh. A total of 244 smear-positive sputum specimens were collected from two referral hospitals in Mymensingh and Netrakona districts. The isolated strains were genotyped by deletion analysis, spoligotyping, and MIRU-VNTR typing. We also analyzed the distributions of drug susceptibility pattern and demographic data among different genotypes. All isolates were identified as M. tuberculosis and among them 167 strains (68.44%) were 'ancestral' and the remaining 77 (31.56%) were 'modern' type. Spoligotyping analysis yielded 119 distinct patterns, among them, 86 isolates had unique patterns and the remaining 158 were grouped into 33 distinct clusters containing 2 to 18 isolates. The predominant spoligotypes belong to the EAI lineage strains, comprising 66 (27.04%) isolates followed by Beijing (7.38%), T1 (6.15%), CAS1-Delhi (5.33), LAM9 (3.28%), MANU-2 and X2. MIRU-VNTR analysis revealed 167 isolates (68%) had unique patterns, whereas 77 (32%) were grouped into 26 clusters and the rate of recent transmission was 20.9%, suggesting that the majority of TB cases in this region are caused by the reactivation of previous TB infections rather than recent transmission. About 136 (55.7%) isolates were sensitive to four anti-TB drugs, 69 (28.3%) were resistant to one or more (except rifampicin and isoniazid combination) drugs and 39 (15.9%) were MDR. In conclusion, our study provides a first insight into molecular characterization and drug resistance profile of M. tuberculosis strains in northeast Bangladesh which will ultimately contribute to the national TB control program.


Subject(s)
Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology , Adolescent , Adult , Aged , Aged, 80 and over , Antitubercular Agents/pharmacology , Bangladesh , Child , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Female , Genetic Variation , Humans , Male , Middle Aged , Minisatellite Repeats , Mycobacterium tuberculosis/isolation & purification , Phylogeny , Sputum/microbiology , Tuberculosis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...