Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Antibiotics (Basel) ; 12(9)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37760663

ABSTRACT

Antibiotic-resistance gene elements (ARGEs) such as antibiotic-resistance genes (ARGs), integrons, and plasmids are key to the spread of antimicrobial resistance (AMR) in marine environments. Kuwait's marine area is vulnerable to sewage contaminants introduced by numerous storm outlets and indiscriminate waste disposal near recreational beaches. Therefore, it has become a significant public health issue and warrants immediate investigation. Coliforms, especially Gram-negative Escherichia coli, have been regarded as significant indicators of recent fecal pollution and carriers of ARGEs. In this study, we applied a genome-based approach to identify ARGs' prevalence in E. coli isolated from mollusks and coastal water samples collected in a previous study. In addition, we investigated the plasmids and intl1 (class 1 integron) genes coupled with the ARGs, mediating their spread within the Kuwait marine area. Whole-genome sequencing (WGS) identified genes resistant to the drug classes of beta-lactams (blaCMY-150, blaCMY-42, blaCTX-M-15, blaDHA-1, blaMIR-1, blaOKP-B-15, blaOXA-1, blaOXA-48, blaTEM-1B, blaTEM-35), trimethoprim (dfrA14, dfrA15, dfrA16, dfrA1, dfrA5, dfrA7), fluroquinolone (oqxA, oqxB, qnrB38, qnrB4, qnrS1), aminoglycoside (aadA2, ant(3'')-Ia, aph(3'')-Ib, aph(3')-Ia, aph(6)-Id), fosfomycin (fosA7, fosA_6, fosA, fosB1), sulfonamide (sul1, sul2, sul3), tetracycline (tet-A, tet-B), and macrolide (mph-A). The MFS-type drug efflux gene mdf-A is also quite common in E. coli isolates (80%). The plasmid ColRNAI was also found to be prevalent in E. coli. The integron gene intI1 and gene cassettes (GC) were reported to be in 36% and 33%, respectively, of total E. coli isolates. A positive and significant (p < 0.001) correlation was observed between phenotypic AMR-intl1 (r = 0.311) and phenotypic AMR-GC (r = 0.188). These findings are useful for the surveillance of horizontal gene transfer of AMR in the marine environments of Kuwait.

2.
Data Brief ; 50: 109449, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37593181

ABSTRACT

Calanoid copepod populations are being severely affected due to the effects of ocean acidification (OA) and ocean warming (OW). These marine organisms are the most abundant primary consumers contributing significantly in the marine food web. Any effect on the abundance and diversity of copepods due to climate change is likely to have serious implications on the marine ecosystem functioning. Molecular studies that play a vital role in assessing the genetic changes under the influence of environmental imbalances are completely lacking for this species. Here we report the genetic variations in three generations of copepods through transcriptome sequencing. RNA sequencing was performed on an Illumina HiSeq platform employing the 2 × 100 bp paired-end chemistry. Approximately, 10GB of data was obtained for all the samples. The raw sequences were assembled through Trinity 2.6.6 and mined for single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs). MIcroSAtellite Identification Tool (MISA) was used for SSR detection and Primer 3 (v 3.0) was utilized to design short oligonucleotide primers (18-20 mers). A total of 15,222 SSRs were identified and 28,944 primer pairs were designed against these motifs. The transcriptome possessed 413,890 SNPs at a frequency of 2.8 per kb. The newly discovered SSRs and SNPs could act as genetic markers for future studies on genetic diversity and conservation for Parvocalanus crassirostris.

3.
Animals (Basel) ; 13(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37443958

ABSTRACT

The increasing atmospheric CO2 concentrations and warming of marine waters have encouraged experiments on multi-stressor interactions in marine organisms. We conducted a multigenerational experiment to assess reproductive capacities regarding egg production in calanoid copepods Parvocalanus crassirostis and Acartia pacifica under different pH and temperature conditions. The experimental set-up allowed assessing the tandem effect of warming and acidification on the number of eggs produced by healthy copepod pairs under two pH conditions of 8.20 and 7.50 (hard selection) as well as with a gradual reduction of 0.05 pH units at each generation (soft selection). The results are quite interesting, with very diverse performance across temperatures. The number of eggs produced under hard selection was higher at pH 8.20 compared to pH 7.50 for both species, with the maximum number of eggs produced at 24-28 °C, whereas under soft selection, there was no significant difference in the egg production rate at 24-28 °C across generations and there was an improvement in the number of eggs produced at 8-16 °C. The results provide evidence that in a future ocean scenario of lower pH and higher temperature, the two species, and possibly the copepod population at large, might not decrease. Copepod populations might be resilient, and the transcriptomic evidence of adaptation to increased temperature and lower pH is a ray of hope. We believe further studies are needed to provide more robust datasets to underpin the hypothesis of adaptation to climate change.

4.
Environ Sci Pollut Res Int ; 30(31): 76351-76371, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37261684

ABSTRACT

This review assesses trace metal concentrations in nearshore and offshore bottom sediments in the Arabian Gulf and Oman focusing particularly on targeted monitoring studies of point sources of contamination near industrial zones (sometimes with ports) and desalination and power plants (often co-located). Concerns have been raised about harmful impacts from accumulation of metals in the semi-enclosed Gulf. The sediment trace metal contaminants of the greatest concern are highlighted with maximum levels of toxic trace metals such as As, Cd, Cu, Pb, Hg, Ni, Zn, and TBT recorded near port and ship repair yards/dry docks as well as industrial and power/desalination plant discharge outfalls. The levels of metals such as Cd, Pb, and Hg exceeding sediment quality guidelines at identified hot spots are of concern. Efforts to mitigate future impacts are recommended.


Subject(s)
Mercury , Metals, Heavy , Water Pollutants, Chemical , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments , Oman , Cadmium , Lead , Environmental Monitoring
5.
Int J Mol Sci ; 24(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37047728

ABSTRACT

Antimicrobial resistance (AMR) is one of the biggest threats to human health worldwide. The World Health Organization (WHO, Geneva, Switzerland) has launched the "One-Health" approach, which encourages assessment of antibiotic-resistant genes (ARGs) within environments shared by human-animals-plants-microbes to constrain and alleviate the development of AMR. Aerosols as a medium to disseminate ARGs, have received minimal attention. In the present study, we investigated the distribution and abundance of ARGs in indoor and outdoor aerosols collected from an urban location in Kuwait and the interior of three hospitals. The high throughput quantitative polymerase chain reaction (HT-qPCR) approach was used for this purpose. The results demonstrate the presence of aminoglycoside, beta-lactam, fluoroquinolone, tetracycline, macrolide-lincosamide-streptogramin B (MLSB), multidrug-resistant (MDR) and vancomycin-resistant genes in the aerosols. The most dominant drug class was beta-lactam and the genes were IMP-2-group (0.85), Per-2 group (0.65), OXA-54 (0.57), QnrS (0.50) and OXA-55 (0.55) in the urban non-clinical settings. The indoor aerosols possessed a richer diversity (Observed, Chao1, Shannon's and Pielou's evenness) of ARGs compared to the outdoors. Seasonal variations (autumn vs. winter) in relative abundances and types of ARGs were also recorded (R2 of 0.132 at p < 0.08). The presence of ARGs was found in both the inhalable (2.1 µm, 1.1 µm, 0.7 µm and < 0.3 µm) and respirable (>9.0 µm, 5.8 µm, 4.7 µm and 3.3 µm) size fractions within hospital aerosols. All the ARGs are of pathogenic bacterial origin and are hosted by pathogenic forms. The findings present baseline data and underpin the need for detailed investigations looking at aerosol as a vehicle for ARG dissemination among human and non-human terrestrial biota.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Kuwait , Vancomycin Resistance , beta-Lactams
6.
Adv Food Nutr Res ; 103: 101-140, 2023.
Article in English | MEDLINE | ID: mdl-36863833

ABSTRACT

The enormous usage of plastic over the last seven decades has resulted in a massive quantity of plastic waste, much of it eventually breaking down into microplastic (MP) and nano plastic (NP). The MPs and NPs are regarded as emerging pollutants of serious concern. Both MPs and NPs can have a primary or secondary origin. Their ubiquitous presence and ability to sorb, desorb, and leach chemicals have raised concern over their presence in the aquatic environment and, particularly, the marine food chain. MPs and NPs are also considered vectors for pollutant transfer along with the marine food chain, and people who consume seafood have began significant concerns about the toxicity of seafood. The exact consequences and risk of MP exposure to marine foods are largely unknown and should be a priority research area. Although several studies have documented an effective clearance mechanism by defecation, significant aspect has been less emphasized for MPs and NPs and their capability to translocate in organs and clearance is not well established. The technological limitations to study these ultra-fine MPs are another challenge to be addressed. Therefore, this chapter discusses the recent findings of MPs in different marine food chains, their translocation and accumulations potential, MPs as a critical vector for pollutant transfer, toxicology impact, cycling in the marine environment and seafood safety. Besides, the concerns and challenges that are overshadowed by findings for the significance of MPs were covered.


Subject(s)
Environmental Pollutants , Food Chain , Humans , Microplastics/toxicity , Plastics , Food Safety
7.
Microorganisms ; 11(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36838497

ABSTRACT

Coastal sediments in the proximity of wastewater and emergency outfalls are often sinks of pharmaceutical compounds and other organic and inorganic contaminants that are likely to affect the microbial community. The metabolites of these contaminants affect microbial diversity and their metabolic processes, resulting in undesirable effects on ecosystem functioning, thus necessitating the need to understand their composition and functions. In the present investigation, we studied the metagenomes of 12 coastal surface sediments through whole genome shot-gun sequencing. Taxonomic binning of the genes predicted about 86% as bacteria, 1% as archaea, >0.001% as viruses and Eukaryota, and 12% as other communities. The dominant bacterial, archaeal, and fungal genera were Woeseia, Nitrosopumilus, and Rhizophagus, respectively. The most prevalent viral families were Myoviridae and Siphoviridae, and the T4 virus was the most dominant bacteriophage. The unigenes further aligned to 26 clusters of orthologous genes (COGs) and five carbohydrate-active enzymes (CAZy) classes. Glycoside hydrolases (GH) and glycoside transferase (GT) were the highest-recorded CAzymes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) level 3 functions were subjugated by purine metabolism > ABC transporters > oxidative phosphorylation > two-component system > pyrimidine metabolism > pyruvate metabolism > quorum sensing > carbon fixation pathways > ribosomes > and glyoxalate and dicarboxylate metabolism. Sequences allying with plasmids, integrons, insertion sequences and antibiotic-resistance genes were also observed. Both the taxonomies and functional abundances exhibited variation in relative abundances, with limited spatial variability (ANOVA p > 0.05; ANOSIM-0.05, p > 0.05). This study underlines the dominant microbial communities and functional genes in the marine sediments of Kuwait as a baseline for future biomonitoring programs.

8.
Front Microbiol ; 13: 955913, 2022.
Article in English | MEDLINE | ID: mdl-35966680

ABSTRACT

The airborne transmission of COVID-19 has drawn immense attention to bioaerosols. The topic is highly relevant in the indoor hospital environment where vulnerable patients are treated and healthcare workers are exposed to various pathogenic and non-pathogenic microbes. Knowledge of the microbial communities in such settings will enable precautionary measures to prevent any hospital-mediated outbreak and better assess occupational exposure of the healthcare workers. This study presents a baseline of the bacterial and fungal population of two major hospitals in Kuwait dealing with COVID patients, and in a non-hospital setting through targeted amplicon sequencing. The predominant bacteria of bioaerosols were Variovorax (9.44%), Parvibaculum (8.27%), Pseudonocardia (8.04%), Taonella (5.74%), Arthrospira (4.58%), Comamonas (3.84%), Methylibium (3.13%), Sphingobium (4.46%), Zoogloea (2.20%), and Sphingopyxis (2.56%). ESKAPEE pathogens, such as Pseudomonas, Acinetobacter, Staphylococcus, Enterococcus, and Escherichia, were also found in lower abundances. The fungi were represented by Wilcoxinia rehmii (64.38%), Aspergillus ruber (9.11%), Penicillium desertorum (3.89%), Leptobacillium leptobactrum (3.20%), Humicola grisea (2.99%), Ganoderma sichuanense (1.42%), Malassezia restricta (0.74%), Heterophoma sylvatica (0.49%), Fusarium proliferatum (0.46%), and Saccharomyces cerevisiae (0.23%). Some common and unique operational taxonomic units (OTUs) of bacteria and fungi were also recorded at each site; this inter-site variability shows that exhaled air can be a source of this variation. The alpha-diversity indices suggested variance in species richness and abundance in hospitals than in non-hospital sites. The community structure of bacteria varied spatially (ANOSIM r 2 = 0.181-0.243; p < 0.05) between the hospital and non-hospital sites, whereas fungi were more or less homogenous. Key taxa specific to the hospitals were Defluvicoccales, fungi, Ganodermataceae, Heterophoma, and H. sylvatica compared to Actinobacteria, Leptobacillium, L. leptobacillium, and Cordycipitaceae at the non-hospital site (LefSe, FDR q ≤ 0.05). The hospital/non-hospital MD index > 1 indicated shifts in the microbial communities of indoor air in hospitals. These findings highlight the need for regular surveillance of indoor hospital environments to prevent future outbreaks.

9.
Toxics ; 10(4)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35448435

ABSTRACT

This study provides baseline information on the concentrations of antibiotics in influent and effluent from two wastewater treatment plants in regular operation in the State of Kuwait. Wastewater samples were collected from the influent and effluent streams of two WWTPs, over four sampling campaigns and analyzed for a broad range of antibiotics. The mean influent concentrations of sulfamethoxazole, ciprofloxacin, clarithromycin, and cefalexin were 852 ng/L, 672 ng/L, 592 ng/L), and 491 ng/L, respectively, at Umm Al Hayman WWTP. At the Kabd WWTP, the influent concentration of clarithromycin was highest with a mean of 949 ng/L, followed by ciprofloxacin (mean, 865 ng/L), cefalexin (mean, 598 ng/L), and sulfamethoxazole (mean, 520 ng/L). The dominant compounds in the effluent from Umm Al Hayman were sulfamethoxazole (mean, 212 ng/L), ciprofloxacin (mean, 153 ng/L), ofloxacin (mean, 120 ng/L), dimetridazole (mean, 96 ng/L), and metronidazole (mean, 93 ng/L). Whereas, at the Kabd WWTP, the dominant compounds were sulfamethoxazole (mean, 338 ng/L), dimetridazole (mean, 274 ng/L), cefalexin (mean, 213 ng/L), ciprofloxacin (mean, 192 ng/L), and clarithromycin (189 ng/L). The mean influent concentrations of all compounds were higher than those measured in the effluents. The concentrations of antibiotic compounds were not significantly different between the two WWTPs (p > 0.05). The removal efficiencies of the various antibiotics over the four sampling campaigns for the Kabd and Umm Hayman WWTPs ranged between 10.87 and 99.75% and also showed that they were variable and were compound dependent. The data clearly show that the concentrations of antibiotics measured in the influents of both WWTPs were highest in samples collected during the winter-summer (September samples) transition followed by the concentrations measured during the winter-summer (March samples) transition period. This is possibly linked to the increased prescription of these medications to treat infectious diseases and flu prevalent in Kuwait during these periods. This study provides the first reported concentrations of antibiotics in the dissolved aqueous influents and effluents of WWTPs in Kuwait. Additional studies are required to evaluate the environmental impact that antibiotic residues may cause since treated wastewater is used in irrigation, and often there are instances when untreated wastewater is discharged directly into the marine environment.

10.
Toxics ; 10(2)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35202257

ABSTRACT

The omnipresence of microplastic (MP) in various environmental samples, including aerosols, has raised public health concerns; however, there is presently very limited information on MPs in indoor aerosol. This paper presents a unique dataset where smaller MPs have been sampled using a six-stage cascade impactor from indoor environments in Kuwait. The MP concentration in the indoor air varied between 3.2 and 27.1 particles m-3, and the relative MP concentration decreased linearly from the lowest to the highest size fraction. A significant effect of location was observed for the total number of MPs (F2,14 = 5.80, p = 0.02) and the inhalable fraction (F2,14 = 8.38, p = 0.005), while location had no effect on the respirable fraction (F2,14 = 0.54, p = 0.60). A significant effect of the type of air conditioning used was also observed for the total number of MPs (F2,19 = 5.58, p = 0.01) and the inhalable fraction (F2,19 = 6.45, p = 0.008), while location had no effect on the respirable fraction (F2,19 = 1.30, p = 0.30). For the total number of MPs and the inhalable fraction, the concentration was significantly higher for the split unit air-conditioning as compared to the central air-conditioning plants. The presence/absence of carpets had no significant effect on the MP concentrations (total: F1,19 = 4.08, p = 0.06; inhalable: F1,19 = 3.03, p = 0.10; respirable: F1,19 = 4.27, p = 0.05). The shape was dominantly fibers, with few fragments in lower size fractions. These datasets represent the first baseline information for Kuwait, and the smaller MPs in all the samples further underscore the need to develop standardized protocols of MP collection in the ≤2.5 µm fraction that can have more conspicuous health implications.

11.
Animals (Basel) ; 12(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35158621

ABSTRACT

Microplastic research has become a buzz word. It is seen as one of the most pressing issues of Anthropocene contamination. There is certainly no doubt about the ubiquitous presence of microplastic (MP) in almost all environmental matrices. However, the validity of considering them as a vector for contaminants needs some reconsideration, there are other more potent pathways. Their effect on marine biota also calls for some realistic experiments with environmental concentrations of MP and nanoplastic (NP). It has been observed that in most published literature, polymer characterization is performed. Is it necessary to do, or will merely finding and confirming the particle as plastic suffice for environmental research? Harmonization of protocols is necessary, and there is likely a need for some inter-laboratory comparison exercises in order to produce comparable data and reliable assessments across regions. Samples collected from the same area using different techniques show an order of magnitude difference in MP concentration. The issue of nanoplastic is more contentious; are we technologically ready to identify NP in environmental samples?

12.
Infect Prev Pract ; 4(1): 100199, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34977533

ABSTRACT

BACKGROUND: Nosocomially acquired severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection has become the most significant pandemic of our lifetime. Though its transmission was essentially attributed to droplets from an infected person, with recent advancements in knowledge, aerosol transmission seems to be a viable pathway, as well. Because of the lower biological load in ambient aerosol, detection of SARS-CoV-2 is challenging. A few recent attempts of sampling large aerosol volumes and using next-generation sequencing (NGS) to detect the presence of SARS-CoV-2 in the air at very low levels gave positive results. These results suggest the potential of using this technique to detect the presence of SARS-CoV-2 and use it as an early warning signal for possible outbreak or recurrence of coronavirus disease 2019 (COVID-19). AIM: To assess efficacy of comprehensive respiratory viral panel (CRVP) sequencing and RT-PCR for low-level identification of SARS-CoV-2 and other respiratory viruses in indoor air. METHODS: A large volume of indoor aerosol samples from three major hospitals involved in COVID-19 care in Kuwait was collected. Viral RNA was isolated and subjected to comprehensive respiratory viral panel sequencing (CRVP) as per the standard protocol to detect the SARS-CoV-2 and other respiratory viruses in the hospital aerosol and monitor variations within the sequences. RT-PCR was also employed to estimate the viral load of SARS-CoV-2. FINDINGS: 13 of 15 (86.7%) samples exhibited SARS-CoV-2 with a relative abundance of 0.2-33.3%. The co-occurrence of human adenoviruses (type C1, C2, C5, C4), respiratory syncytial virus (RSV), influenza B, and non-SARS-CoV-229E were also recorded. Alignment of SARS-CoV-2 sequences against the reference strain of Wuhan China revealed variations in the form of single nucleotide polymorphisms (SNPs-17), insertions and deletions (indels-1). These variations were predicted to create missense (16), synonymous (15), frameshift (1) and stop-gained (1) mutations with a high (2), low (15), and moderate (16) impact. CONCLUSIONS: Our results suggest that using CRVP on a large volume aerosol sample was a valuable tool for detecting SARS-CoV-2 in indoor aerosols of health care settings. Owing to its higher sensitivity, it can be employed as a surveillance strategy in the post COVID times to act as an early warning system to possibly control future outbreaks.

13.
Mar Pollut Bull ; 174: 113265, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34959104

ABSTRACT

This study provides an insight into the polychlorinated biphenyls (PCBs) inventories in the sediments of the northwestern Arabian/Persian Gulf. PCBs can be used as chemical markers that correlate with historical events in the region, to estimate the sedimentation rates in the northern Gulf, and to determine the sources of pollutants in the study area. The concentrations of PCBs were generally patchy in sediments. At Station 1 the ΣPCB concentrations generally fluctuated between 0.100 and 0.400 ng g-1 dw throughout the depositional history measured in a sediment core. There were four peaks in the ΣPCB profile corresponding to 1969, 1979, 1983 and 1991. Station 2 showed a prominent peak at depth of 25 cm. The concentrations of the ΣPCBs and ΣICE congeners at this depth were 28 and 12 ng g-1 dw respectively. Concentrations then dropped dramatically thereafter by a factor of 4. The ΣPCB concentrations at Station 3 were very low compared to the concentrations measured at Stations 1 and 2. The PCB concentration in Core 4 which was taken from open waters was 2-3 orders of magnitude lower than those in the other coastal cores. However, a 1990-91 peak was omnipresent in these cores. There is no record of PCB production within the Gulf region, and PCB releases into the Kuwait marine environment are likely to originate from their use in products. These maxima in early-1990s can be correlated to inputs from war-related activities, including the reported destruction of PCB-containing transformers and military equipment during the occupation of Kuwait. None of the recent sediment core sections at the four stations had a ΣPCB concentration near the effects range-median (ERM) concentration of 180 ng g-1, or permissible exposure limits (PEL) of 189 ng g-1, or were above the effect range-low (ERL) values of 22.7 ng g-1.


Subject(s)
Environmental Pollutants , Polychlorinated Biphenyls , Water Pollutants, Chemical , Environmental Monitoring , Environmental Pollutants/analysis , Geologic Sediments , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis
14.
Toxics ; 11(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36668740

ABSTRACT

Phytoplankton and zooplankton are key marine components that play an important role in metal distribution through a food web transfer. An increased phytoplankton concentration as a result of ocean acidification and warming are well-established, along with the fact that phytoplankton biomagnify 210Po by 3−4 orders of magnitude compared to the seawater concentration. This experimental study is carried out to better understand the transfer of polonium between primary producers and consumers. The experimental produced data highlight the complex interaction between the polonium concentration in zooplankton food, i.e. phytoplankton, its excretion via defecated fecal pellets, and its bioaccumulation at ambient seawater pH and a lower pH of 7.7, typical of ocean acidification scenarios in the open ocean. The mass of copepods recovered was 11% less: 7.7 pH compared to 8.2. The effects of copepod species (n = 3), microalgae species (n = 3), pH (n = 2), and time (n = 4) on the polonium activity in the fecal pellets (expressed as % of the total activity introduced through feeding) was tested using an ANOVA 4. With the exception of time (model: F20, 215 = 176.84, p < 0.001; time: F3 = 1.76, p = 0.16), all tested parameters had an impact on the polonium activity (copepod species: F2 = 169.15, p < 0.0001; algae species: F2 = 10.21, p < 0.0001; pH: F1 = 9.85, p = 0.002) with complex interactions (copepod x algae: F2 = 19.48, p < 0.0001; copepod x pH: F2 = 10.54, p < 0.0001; algae x pH: F2 = 4.87, p = 0.009). The experimental data underpin the hypothesis that metal bioavailability and bioaccumulation will be enhanced in secondary consumers such as crustacean zooplankton due to ocean acidification.

15.
Mar Pollut Bull ; 173(Pt A): 113040, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34872167

ABSTRACT

This study was carried out to provide baseline information on the concentrations of pharmaceuticals in Kuwait's coastal waters. Samples were collected over four sampling campaigns from various outfalls that occasionally discharged water into the marine environment and analyzed for a range of pharmaceuticals including analgesic/anti-inflammatories, antibiotics, anticoagulant, antidiabetic, antihelmintics, antihypertensives, antiplatelet agent, asthma medication, ß-blocking agent, calcium channel blocker, diuretic, histamine H1 and H2 receptor antagonist, lipid regulators/cholesterol-lowering, prostatic hyperplasia, psychiatric drug, sedation and muscle relaxant, synthetic glucocorticoid, tranquilizer and x-ray contrast media. The levels varied between the detection limits of the method and a maximum of 28,183 ng/L for analgesics/anti-inflammatories. The highest pharmaceutical concentrations were in samples collected during the September campaign, possibly linked to the increased prescription of these medications to treat infectious diseases and flu prevalent in Kuwait during the winter months. The spatial variation is concentration is evident with KISR site being most polluted as hospital wastewater is discharged at the site. This study provides the first dataset on the concentrations of pharmaceuticals in the seawater in Kuwait and possibly the wider Arabian Gulf. Kuwait's coastal water pharmaceutical concentrations derived from this study exceed those reported from the Spanish coast, the Hong Kong harbour, the Bohai and the Yellow seas. More studies are needed to evaluate the environmental impact that these residues may have on non-target organisms.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Environmental Monitoring , Kuwait , Seawater , Water Pollutants, Chemical/analysis
16.
Article in English | MEDLINE | ID: mdl-34948917

ABSTRACT

This study provides the first data set of 210Po and 210Pb activity concentrations in the organic and inorganic components of several particle size classes of aerosols collected at two sampling stations in Kuwait. The 210Po concentrations in the aerosols (Bq/g) were similar in all of the particle size classes, but as most (91%) of the aerosol load was made of fine fraction particles of PM0.39-2.5 µm, most of the 210Po activity was carried by this aerosol fraction. At the two sampling stations, the 210Po/210Pb activity concentration ratios in the aerosols were similar, stable around the year, and averaged 1.5 (range 1.2-1.9), much higher than the typical activity concentration ratios of these radionuclides in unmodified (background) aerosols, with Po/Pb < 0.1. The aerosol enrichment in 210Po was likely originated from the oil industry, specifically by gas flaring and oil refining in the Gulf region. Radionuclide analysis in the organic and inorganic components of aerosols showed that the 210Po concentration in the organic component was one order of magnitude higher than the 210Po concentration in the inorganic component, in contrast with 210Pb, which displayed similar concentrations in both organic and inorganic aerosol components. The 210Po carrying organic component of aerosols was investigated and it was found to be largely composed of microorganisms with high microbial and fungi diversity, with the phyla Proteobacteria, Ascomycota, and Basidiomycota being dominant among the bacteria and with Zygomycota being dominant among the fungi. Therefore, we are facing an active concentration process of the atmospheric 210Po carried out by microorganisms, which underlies the 210Po enrichment process in the organic component of aerosols. This bioconcentration of polonium in bioaerosols was unknown.


Subject(s)
Air Pollutants, Radioactive , Polonium , Radiation Monitoring , Aerosols/analysis , Air Pollutants, Radioactive/analysis , Lead Radioisotopes/analysis , Polonium/analysis
17.
Pak J Pharm Sci ; 34(3): 995-1001, 2021 May.
Article in English | MEDLINE | ID: mdl-34602424

ABSTRACT

A novel method, for the synthesis of silver nanoparticles that are eco-friendly by means of mixed reductants method, has been developed. The combined extract of Mentha viridis plant and Prunus domestica gum were used as reducing agents for the synthesis of silver nanoparticles of the size less than 40 nm in diameter. The effect of time and concentration on the formation of silver nanoparticles were also monitored. The silver nanoparticles formed were verified by surface Plasmon spectra using single and double beam UV-Vis spectrophotometer. The XRD technique and scanning electron microscopy were performed to analyze the crystalline structure, crystallite size and morphology. The synthesized silver nanoparticles were tested against different bacterial and fungus strains. The silver nanoparticles showed good inhibition in antimicrobial study and low MIC for bacterial strains. The antioxidant assay was performed to check the scavenging activity. In DPPH, the silver nanoparticles showed good scavenging activity and were found close to that of ascorbic acid.


Subject(s)
Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Mentha , Metal Nanoparticles , Prunus domestica , Silver/pharmacology , Anti-Infective Agents/chemistry , Antioxidants/chemistry , Aspergillus/drug effects , Candida albicans/drug effects , Chemistry Techniques, Synthetic , Chemistry, Pharmaceutical , Fusarium/drug effects , Hypocreales/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Microscopy, Electron, Scanning , Penicillium chrysogenum/drug effects , Photoelectron Spectroscopy , Plant Extracts , Plant Gums , Proteus vulgaris/drug effects , Pseudomonas/drug effects , Reducing Agents , Silver/chemistry , Silver Nitrate , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Surface Plasmon Resonance
18.
Mar Pollut Bull ; 173(Pt A): 112913, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34534928

ABSTRACT

This review presents the spatio-temporal distribution of petroleum hydrocarbons including total petroleum hydrocarbon (TPH), total organic carbon (TOC), total aliphatics, unresolved complex mixture (UCM), polycyclic aromatic hydrocarbons (PAHs), and total aromatic hydrocarbons in marine sediments of the Gulf (Iraq, Iran, Kuwait, Saudi Arabia, Bahrain, Qatar, United Arab Emirates and Oman). The TPH ranged between 0.134 and 48,018 µg g-1 dw where 10-15 µg g-1 dw was considered as a background concentration. The TOC levels were between 0.04 and 14.96% with a mean concentration of 1.154 ±â€¯0.523%. Total aliphatic hydrocarbon levels were reported between 0.1 and 76 µg g-1, the 2005 levels that had the largest spatial coverage were between 0.1 and 4.4 µg g-1. The unresolved complex mixture was very variable post Gulf War but by 2005 most of the Gulf War artifacts had decreased and the levels were between 1.5 and 73.5 µg g-1. The Æ©PAHs in bottom sediments by 2005 were between 0.3 and 3450 ng g-1. The total aromatics were limited in spatial extent and varied between 1.0 and 14,000 µg g-1. Most of the locations with elevated contamination levels were near point sources, e.g. oil facilities and ports, and these sites could be categorized as chronically contaminated by oil. This review highlights the paucity of the data both in terms of the spatial extent and temporal coverage, and with several Gulf states undergoing large-scale coastal developments and offshore oil exploration, it will be prudent to undertake regular monitoring of the petroleum hydrocarbons to ensure effective ecosystem functioning as well as seafood and drinking water safety in the Gulf region. The spatial distribution also highlights the lack of uniformity in assessments and the need to support marine pollution assessments in the Gulf countries.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Geologic Sediments , Hydrocarbons/analysis , Petroleum/analysis , Petroleum Pollution/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis
19.
Toxins (Basel) ; 13(8)2021 07 27.
Article in English | MEDLINE | ID: mdl-34437396

ABSTRACT

The dinoflagellates of the genus Gambierdiscus are found in almost all oceans and seas between the coordinates 35° N and 35° S. Gambierdiscus and Fukuyoa are producers of ciguatoxins (CTXs), which are known to cause foodborne disease associated with contaminated seafood. The occurrence and effects of CTXs are well described in the Pacific and the Caribbean. However, historically, their properties and presence have been poorly documented in the Indian Ocean (including the Bay of Bengal, Andaman Sea, and the Gulf). A higher occurrence of these microorganisms will proportionately increase the likelihood of CTXs entering the food chain, posing a severe threat to human seafood consumers. Therefore, comprehensive research strategies are critically important for developing effective monitoring and risk assessments of this emerging threat in the Indian Ocean. This review presents the available literature on ciguatera occurrence in the region and its adjacent marginal waters: aiming to identify the data gaps and vectors.


Subject(s)
Ciguatoxins , Dinoflagellida , Animals , Ciguatoxins/toxicity , Environmental Monitoring , Humans , Oceans and Seas
20.
Mar Pollut Bull ; 168: 112392, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33894587

ABSTRACT

The concentrations of four trace metals (Cd, Cu, Pb, and Zn) were investigated for the first time in phytoplankton, zooplankton, and the seawater samples collected from the coast of Gabès, Tunisia, Mediterranean Sea. For over 40 years, this coast has witnessed significant anthropogenic impacts form fertilizer processing. Results obtained for Cd, Cu, Pb, and Zn in seawater far exceed the concentration reported for other Mediterranean coastal waters, highlighting the Gulf of Gabès as a pollution hotspot. The average metals concentration was in the order Zn > Pb > Cu > Cd in water, and phytoplankton, whereas Pb > Zn > Cu > Cd in zooplankton. The biomagnification in phytoplankton and zooplankton for Zn, Pb, Cu, and Cd was 116, 56, 38, 31, and 127, 157, 30 and 27. The biomagnification of Zn and Pb was higher in zooplankton than phytoplankton, while Cu and Cd were higher in phytoplankton.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Animals , Environmental Monitoring , Mediterranean Sea , Metals, Heavy/analysis , Phytoplankton , Seawater , Tunisia , Water Pollutants, Chemical/analysis , Zooplankton
SELECTION OF CITATIONS
SEARCH DETAIL
...